B.TECH (CIVIL ENGINEERING)
SCHEME & SYLLABUS
(TOTAL CREDITS = 200)
THIRD SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM-201E</td>
<td>Economics</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-201E</td>
<td>Structural Analysis-I</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-203E</td>
<td>Fluid Mechanics-I</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-205E</td>
<td>Surveying-I</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-207E</td>
<td>Engineering Geology</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-209E</td>
<td>Building Construction, Materials & Drawing</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td>CE-211E</td>
<td>Structural Mechanics-I(P)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE-213E</td>
<td>Fluid Mechanics-I(P)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE-215E</td>
<td>Surveying-I(P)</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUM-202E</td>
<td>Fundamentals of Management</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>MATH-201E</td>
<td>Mathematics-III</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>CE –202E</td>
<td>Structural Analysis-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE - 204E</td>
<td>Fluid Mechanics-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE - 206E</td>
<td>Soil Mechanics</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE –208E</td>
<td>Surveying-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE –210E</td>
<td>Fluid Mechanics-II (P)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE –212E</td>
<td>Soil Mechanics (P)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE –214E</td>
<td>Surveying-II(P)</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>UCC 581</td>
<td>*Environmental Studies</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
</tr>
</tbody>
</table>

Note: The students shall devote 4 weeks to Survey Camp after 4th Semester Examination.

* Environmental Studies will be of qualifying nature.

TOTAL CREDITS = 50
FIFTH SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-301E</td>
<td>Structural Analysis-III</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-303E</td>
<td>Design of Steel Structures-I</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td>CE-305E</td>
<td>Design of Concrete Structures-I</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>CE-307E</td>
<td>Hydrology</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-309E</td>
<td>Geotechnology-I</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-311E</td>
<td>Project Planning & Management</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-313E</td>
<td>Structural Mechanics-II(P)</td>
<td></td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE-315E</td>
<td>Concrete Lab (P)</td>
<td></td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE-317E</td>
<td>Geotechnology (P)</td>
<td></td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE-319E</td>
<td>Survey Camp</td>
<td></td>
<td>-</td>
<td>-</td>
<td>3.0</td>
</tr>
</tbody>
</table>

TOTAL 27.0

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-302E</td>
<td>Design of Steel Structures-II</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4.0</td>
</tr>
<tr>
<td>CE-304E</td>
<td>Irrigation Engineering-I</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-306E</td>
<td>Water Resources & Systems Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-308E</td>
<td>Geotechnology-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-310E</td>
<td>Transportation Engineering-I</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>CE-312E</td>
<td>Water Supply & Treatment</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-314E</td>
<td>Transportation Engg.I(P)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE-316E</td>
<td>Environmental Engg.-I(P)</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>CE-318E</td>
<td>Computer Applications</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

TOTAL 24.0

Note: Students shall devote 6 weeks to training after Sixth semester examination outside the College campus at approved works.

TOTAL CREDITS = 51
SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-401E</td>
<td>Design of Concrete Structures-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-403E</td>
<td>Irrigation Engineering-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-405E</td>
<td>Transportation Engg.-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-407E</td>
<td>Sewerage & Sewage Treatment</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>CE (List attached) Departmental Elective-I</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>CE (List attached) Departmental Elective-II</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>CE-409E</td>
<td>Concrete Structures-II (Drawing)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>CE-411E</td>
<td>Irrigation Engg. Design & Drawing</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>PROJECT-I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE-429E</td>
<td>Geotechnical Engineering OR</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>CE-431E</td>
<td>Transportation Engineering OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE-433E</td>
<td>Environmental Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE-435E</td>
<td>Practical Training Report</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.5</td>
</tr>
</tbody>
</table>

EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-402E</td>
<td>Bridge Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-404E</td>
<td>Railway & Airport Engineering</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>CE-406E</td>
<td>Industrial Waste Water Treatment</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-408E</td>
<td>Estimation & Accounts</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>CE (List attached) Departmental Elective-III</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>CE (List attached) Departmental Elective-IV</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>CE-426E</td>
<td>Transportation Engg.-II(P)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>CE-428E</td>
<td>Environmental Engg.II (P)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>PROJECT-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>CE-430 E</td>
<td>Structural Engineering OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE-432E</td>
<td>Water Resources Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE-434E</td>
<td>Seminar</td>
<td>-</td>
<td>-</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>CE-436E</td>
<td>General Fitness & Professional Aptitude</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.5</td>
</tr>
</tbody>
</table>

TOTAL CREDITS = 48
Departmental Elective-I

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-413E</td>
<td>Hydro Electric Power Development</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-415E</td>
<td>River Mechanics & Flood Control</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-417E</td>
<td>IT & CAD Applications in Civil Engg.</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-419E</td>
<td>Rock Mechanics</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Departmental Elective-II

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-421E</td>
<td>Elements of Earthquake Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-423E</td>
<td>Concrete Technology</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-425E</td>
<td>Transport Planning</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-427E</td>
<td>Advanced Traffic Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Departmental Elective-III

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-410E</td>
<td>Introduction to Finite Element Method</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-412E</td>
<td>Structural Optimization</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-414E</td>
<td>Geo-synthetics Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-416E</td>
<td>Machine Foundations</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Departmental Elective-IV

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P/D</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-418E</td>
<td>Ground Water Hydrology</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-420E</td>
<td>Design of Hydraulic Structures</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-422E</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>CE-424E</td>
<td>Remote Sensing & GIS</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
</tbody>
</table>
B.TECH (CIVIL ENGINEERING)
III SEMESTER
COURSE OBJECTIVE:
The purpose of this course is to:
1. Acquaint the student in the basic economic concepts and their operational significance and
2. Stimulate him to think systematically and objectively about contemporary economic problems.

UNIT-I

UNIT-II
Concepts and measurement of utility, Law of Diminishing Marginal Utility, Law of equimarginal utility - its practical application and importance

UNIT-III
Meaning of Demand, Individual and Market demand schedule, Law of demand, shape of demand curve, Elasticity of demand, measurement of elasticity of demand, factors effecting elasticity of demand, practical importance & applications of the concept of elasticity of demand

UNIT-IV
Meaning of production and factors of production; Law of variable proportions, Returns to scale, Internal and External economics and diseconomies of scale.
Various concepts of cost - Fixed cost, variable cost, average cost, marginal cost, money cost, real cost opportunity cost. Shape of average cost, marginal cost, total cost etc. in short run and long run.

UNIT-V
Meaning of Market, Types of Market - Perfect Competition, Monopoly, Oligopoly, Monoplistic Competition (Main features of these markets)
Supply and Law of Supply, Role of Demand & Supply in Price Determination and effect of changes in demand and supply on prices.

UNIT-VI

TEXT BOOKS:

REFERENCE BOOKS:
1. A Text Book of Economic Theory Stonier and Hague (Longman’s Landon)
6. Indian Economy: Rudar Dutt & K.P.M. Sundhram

NOTE: Eight questions are to be set at least one question from each unit and the students will have to attempt five questions in all.
UNIT-I

Analysis of stresses and strains:
Analysis of simple states of stresses and strains, elastic constraints, bending stresses, theory of simple bending, flexure formula, combined stresses in beams, shear stresses, Mohr's circle, Principle stresses and strains, torsion in shafts and closed thin walled sections, stresses and strains in cylindrical shells and spheres under internal pressure.

Theory of Columns:
Slenderness ratio, end connections, short columns, Euler's critical buckling loads, eccentrically loaded short columns, cylinder columns subjected to axial and eccentric loading.

UNIT-II

Bending moment and shear force in determinate beams and frames:
Definitions and sign conventions, axial force, shear force and bending moment diagrams.

Three hinged arches:
Horizontal thrust, shear force and bending moment diagrams.

UNIT-III

Deflections in beams:

UNIT-IV

Analysis of statically determinate trusses:

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
B. Tech. III Semester (Civil)
CE-203E FLUID MECHANICS-I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Theory: 70
Sessional: 30
Total: 100
Duration of Exam: 3 Hrs.

UNIT-I

Introduction:
Fluid properties, mass density, specific weight, specific volume and specific volume and specific gravity, surface tension, capillarity, pressure inside a droplet and bubble due to surface tension, compressibility viscosity, Newtonian and Non-newtonian fluids, real and ideal fluids.

Kinematics of Fluid Flow:
Steady & unsteady, uniform and non-uniform, laminar & turbulent flows, one, two & three dimensional flows, stream lines, streak lines and path lines, continuity equation in differential form, rotation and circulation, elementary explanation of stream function and velocity potential, rotational and irrotational flows, graphical and experimental methods of drawing flownets.

UNIT-II

Fluid Statics:
Pressure-density-height relationship, gauge and absolute pressure, simple differential and sensitive manometers, two liquid manometers, pressure on plane and curved surfaces, center of pressure, Buoyancy, stability of immersed and floating bodies, determination of metacentric height, fluid masses subjected to uniform acceleration, free and forced vortex.

UNIT-III

Dynamic of Fluid Flow:
Euler's equation of motion along a streamline and its integration, limitation of Bernoulli's equation, Pitot tubes, venturimeter, Orificemeter, flow through orifices & mouth pieces, sharp crested weirs and notches, aeration of nappe.

UNIT-IV

Boundary layer analysis:
Boundary layer thickness, boundary layer over a flat plate, laminar boundary layer, turbulent boundary layer, laminar sub-layer, smooth and rough boundaries, local and average friction coefficient, separation and its control.

Dimensional Analysis and Hydraulic Similude:
Dimensional analysis, Buckingham theorem, important dimensionless numbers and their significance, geometric, kinematic and dynamic similarity, model studies, physical modeling, similar and distorted models.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
1. Hydraulic and Fluid Mechanic by P.N.Modi & S.M.Seth
2. Introduction to Fluid Mechanics by Robert W.Fox & Alan T.McDonald
3. Fluid Mechanics Through Problems by R.J.Garde
4. Engineering Fluid Mechanics by R.J.Garde & A.G.Mirajgaoker
B. Tech. III Semester (Civil)
CE-205E SURVEYING-I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Theory</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td>Sessional</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of Exam</td>
<td>3 Hrs.</td>
</tr>
</tbody>
</table>

UNIT-I

Fundamental Principles of Surveying:
Definition, objects, classification, fundamental principles, methods of fixing stations.

Measurement of distances:
Direct measurement, instruments for measuring distance, instruments for making stations, chaining of line, errors in chaining, tape corrections examples.

Compass and Chain Traversing:
Methods of traversing, instruments for measurement of angles-prismatic and surveyor's compass, bearing of lines, local attraction, examples.

UNIT-II

Leveling:
Definition of terms used in leveling, types of levels and staff, temporary adjustment of levels, principles of leveling, reduction of levels, booking of staff readings, examples, contouring, characteristics of contours lines, locating contours, interpolation of contours.

Plane Table Surveying:
Plane table, methods of plane table surveying, radiation, intersection, traversing and resection, two point and three point problems.

UNIT-III

Theodolite and Theodolite Traversing:
Theodolites, temporary adjustment of theodolite, measurement of angles, repetition and reiteration method, traverse surveying with theodolite, checks in traversing, adjustment of closed traverse, examples.

Tacheometry:
Uses of tacheometry, principle of tacheometric surveying, instruments used in tacheometry, systems of tacheometric surveying-stadia system fixed hair method, determination of tacheometric constants, tangential systems, examples.

UNIT-IV

Curves:
Classification of curves, elements of simple circular curve, location of tangent points-chain and tape methods, instrumental methods, examples of simple curves. Transition Curves-Length and types of transition curves, length of combined curve, examples.

Vertical Curves:
Necessity and types of vertical curves.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
1. Surveying Vol.I & II by B.C.Punmia
2. Surveying Vol.I by T.P.Kanitkar
B. Tech. III Semester (Civil)
CE-207E ENGINEERING GEOLOGY

L T P CREDIT
3 1 - 3.5

Theory : 70
Sessional: 30
Total : 100
Duration of Exam : 3 Hrs.

UNIT-I

Introduction:
Definition, object, scope and subdivision of geology, geology around us. The interior of the earth. Importance of geology in Civil Engineering projects.

Physical Geology:
The external and internal geological forces causing changes, weathering and erosion of the surface of the earth. Geological work of ice, water and winds. Soil profile and its importance. Earthquakes and volcanoes.

UNIT-II

Mineralogy and Petrology:

Structural Geology:
Forms and structures of rocks. Bedding plane and outcrops Dip and Strike. Elementary ideas about fold, fault, joint and unconformity and recognition on outcrops. Importance of geological structures in Civil Engineering projects.

UNIT-III

Applied Geology:
Hydrogeology, water table, springs and Artesian well, aquifers, ground water in engineering projects. Artificial recharge of ground water, Elementary ideas of geological investigations. Remote sensing techniques for geological and hydrological survey and investigation. Uses of geological maps and interpretation of data, geological reports.

Suitability and stability of foundation sites and abutments:
Geological condition and their influence on the selection, location, type and design of dams, reservoirs, tunnels, highways, bridges etc. Landslides and Hill-slope stability.

UNIT-IV

Improvement of foundation rocks:
Precaution and treatment against faults, joints and ground water, retaining walls and other precautions.

Geology and environment of earth.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
1 A Text Book of Geology by P.K. Mukherjee
2 Physical and General Geology by S.K.Garg
3 Engineering and General Geology by Prabin Singh
4 Introduction of Physical Geology by A.Holmes.
A. CONSTRUCTION

UNIT-I

Masonry Construction:
Introduction, various terms used, stone masonry-Dressing of stones, Classifications of stone masonry, safe permissible loads, Brick masonry-bonds in brick work, laying brick work, structural brick work-cavity and hollow walls, reinforced brick work, Defects in brick masonry, composite stone and brick masonry, glass block masonry.

Cavity and Partition Walls:
Advantages, position of cavity, types of non-bearing partitions, constructional details and precautions, construction of masonry cavity wall.

Foundation:
Functions, types of shallow foundations, sub-surface investigations, geophysical methods, general feature of shallow foundation, foundations in water logged areas, design of masonry wall foundation, introduction to deep foundations i.e. pile and pier foundations.

UNIT-II

Damp-Proofing and Water-Proofing:
Defects and causes of dampness, prevention of dampness, materials used, damp-proofing treatment in buildings, water proofing treatment of roofs including pitched roofs.

Roofs and Floors:
Types of roofs, various terms used, roof trusses-king post truss, queen post truss etc.
Floor structures, ground, basement and upper floors, various types of floorings.

Doors and Windows:
Locations, sizes, types of doors and windows, fixtures and fastners for doors and windows.

Acoustics, Sound Insulation and Fire Protection:
Classification, measurement and transmission of sound, sound absorber, classification of absorbers, sound insulation of buildings, wall construction and acoustical design of auditorium, fire-resisting properties of materials, fire resistant construction and fire protection requirements for buildings.

B. MATERIALS

UNIT-III

Stones:
Classification, requirements of good structural stone, quarrying, blasting and sorting out of stones, dressing, sawing and polishing, prevention and seasoning of stone.

Brick and Tiles:
Classification of bricks, constituents of good brick earth, harmful ingredients, manufacturing of bricks, testing of bricks.
Tiles: Terra-cotta, manufacturing of tiles and terra-cotta, types of terra-cotta, uses of terra-cotta.

Limes, Cement and Mortars:
Classification of lime, manufacturing, artificial hydraulic lime, pozzolona, testing of lime, storage of lime, cements composition, types of cement, manufacturing of ordinary Portland cement, testing of cement, special types of cement, storage of cement.
Mortars: Definition, proportions of lime and cement mortars, mortars for masonry and plastering.
UNIT-IV

Timber:
Classification of timber, structure of timber, seasoning of timber, defects in timber, fire proofing of timber, plywood, fiberboard, masonite and its manufacturing, important Indian timbers.

Ferrous and Non-Ferrous Metals:
Definitions, manufacturing of cast iron, manufacturing of steel from pig iron, types of steel, marketable form of steel, manufacturing of aluminium and zinc.

Paints and Varnishes:
Basic constituents of paints, types of paints, painting of wood, constituents of varnishes, characteristics and types of varnishes.

Plastic:
Definition, classification of plastics, composition and raw materials, manufacturing, characteristics and uses, polymerization, classification, special varieties.

C. DRAWINGS
1. Typical drawings of:
 a) Cavity Wall
 b) Bonds in brick work
 c) Grillage foundation
2. Preparation of building drawing mentioning its salient features including the following details:
 a) Ground floor plan
 b) Two Sectional Elevations
 c) Front and Side Elevations
 d) Plan and Sectional Elevation of stair case, doors/ windows/ ventilators, floor and roof.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
2. Building Material, Rangawala
3. Construction Engineering, Y.S. Sane
B. Tech III Semester (Civil)

CE-211E STRUCTURAL MECHANICS-I (P)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
<td>100</td>
</tr>
<tr>
<td>Viva-Voce</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sessional</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Verification of reciprocal theorem of deflection using a simply supported beam.
2. Verification of moment area theorem for slopes and deflections of the beam.
3. Deflections of a truss- horizontal deflection & vertical deflection of various joints of a pin-jointed truss.
4. Elastic displacements (vertical & horizontal) of curved members.
5. Experimental and analytical study of 3 hinged arch and influence line for horizontal thrust.
6. Experimental and analytical study of behavior of struts with various end conditions.
7. To determine elastic properties of a beam.
8. Uniaxial tension test for steel (plain & deformed bars)
9. Uniaxial compression test on concrete & bricks specimens.

B. Tech. III Semester (Civil)

CE-213E FLUID MECHANICS-I (P)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
<td>100</td>
</tr>
<tr>
<td>Viva-Voce</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sessional</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. To determine meta-centric height of the ship model.
2. To verify the Bernoulli's theorem.
3. To determine coefficient of discharge for an Orifice-meter.
4. To determine coefficient of discharge of a venture-meter.
5. To determine the various hydraulic coefficients of an Orifice (C_d, C_c, C_v).
6. To determine coefficient of discharge for an Orifice under variable head.
7. To calibrate a given notch.
8. To determine coefficient of discharge for a mouth piece.
10. To study development of boundary layer over a flat plate.
11. To study velocity distribution in a rectangular open channel.
12. Velocity measurements by current meter, float, double float (demonstration only).
13. Experiment on Vortex formation (demonstration only).
1. Chain surveying: Chaining and chain traversing.
2. Compass traversing.
4. To verify the, three point problem.
5. Leveling: Profile leveling and plotting of longitudinal section and cross sections.
6. Permanent adjustment of level.
7. Reciprocal leveling.
8. Contouring and preparation contour map.
9. Use of Tangent Clinometers.
B.TECH (CIVIL ENGINEERING)
IV SEMESTER
SYLLABUS FOR HUM-202E sent by GJU S&T wide letter no Acad./AC-III/12/2179-87
Dated: 28-08-2012

FUNDAMENTALS OF MANAGEMENT

Theory: 70 Marks
Sessional: 30 Marks
Duration: 3 hrs

UNIT-I

UNIT-II
Nature and Significance of Planning, Personnel management, Functions of personal management, Manpower planning, Process of manpower planning, Recruitment, Selection, Promotion, Secrecy, vs. Merit, Training - objectives and types of training.

UNIT-III
Production Management: Definition, Objectives, Functions and Scope, Production Planning and Control, significant stages in production planning and control, Brief introduction to the concepts of inventory management, inventory control, its importance and various methods.

UNIT-IV
Marketing Management: Definition of marketing, Marketing concept, objectives & Functions of marketing, Marketing Research: Meaning, Definition, objectives, Importance, Limitations, Process, Advertising, Meaning of advertising, objectives, functions, criticism.

UNIT-V

BOOKS RECOMMENDED:

TEXT BOOKS:
1. Principles and Practice of Management - R.S. Gupt, B.D. Sharma, N.S. Bhalla (Kalyan Publishers)

REFERENCE BOOKS:

NOTE: Eight questions are to be attempted out of any one from each unit and the students will have to attempt five questions in all.
SYLLABUS: MATHEMATICS-III, MATH 201E

Part A

- Fourier Series and Fourier Transformations: Euler's formula, conditions for a Fourier expansion, change of interval, Fourier expansion of odd and even functions, Fourier expansion of square wave, rectangular wave, sawtooth wave, half and full rectified wave, half and full wave.
- Fourier integrals: Fourier transforms, Shifting theorem (both on time and frequency axes), Fourier transforms of derivatives, Fourier transform of integrals, Convolution theorem, Fourier transform of Dirac delta function.

Part B

- Functions of Complex Variables: Definition, Exponential function, Trigonometric and Hyperbolic functions, Logarithmic functions, Limit, and Continuity of a function, Derivability, and Analyticity.
- Cauchy-Riemann equations: Necessary and sufficient conditions for a function to be analytic, polar form of the Cauchy-Riemann equations, Harmonic functions, application to flow problems, integration of complex functions, Cauchy Integral theorem and formula.
- Power series, radius and circle of convergence, Taylor's and MacLaurin's series, zeros and singularities of complex functions, Residues, Evaluation of real integrals using residues (around units and semicircle only).

Part C

- Probability, Distributions, and Hypothesis Testing: Conditional probability, Bayes' theorem, and its applications, expected value of a random variable, Properties, and application of Binomial, Poisson, and Normal distributions.
- Testing of a hypothesis, test of significance for large samples, Student's t-distribution (approximation only), Chi-square test of goodness of fit.

TEXT BOOKS

REFERENCE BOOKS

3. Operation Research, M.A. Tanu
4. Probability and Statistics for Engineers, Johnson, P.H.

Note: Examiners will set eight questions, taking two from Part-A, one from Part-B, and three from Part-C. Students will be required to attempt five questions, taking at least one from each part.
UNIT I

Statically Indeterminate Structures:
Introduction, Static and Kinematic Indeterminacies, Castigliano's theorems, Strain energy method, Analysis of frames with one or two redundant members using Castigliano's 2\(^{nd}\) theorem.

UNIT II

Slope deflection and moment Distribution Methods:
Analysis of continuous beams & portal frames, Portal frames with inclined members.

UNIT III

Column Analogy Method:
Elastic centre, Properties of analogous column, Applications to beam & frames.

Analysis of Two hinged Arches:
Parabolic and circular Arches, Bending Moment Diagram for various loadings, Temperature effects, Rib shortening, Axial thrust and Radial Shear force diagrams.

UNIT IV

Unsymmetrical Bending
Introduction Centroidal principal axes of sections, Bending stresses in beam subjected to unsymmetrical bending, shear centre, shear centre for channel, Angles and Z sections.

Cable and suspension Bridges:
Introduction, uniformly loaded cables, Temperature stresses, three hinged stiffening Girder and two hinged stiffening Girder.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

BOOKS:

UNIT-I

Laminar Flow:
Navier Stoke's equation, Laminar flow between parallel plates, Couette flow, laminar flow through pipes-Hagen Poiseuille law, laminar flow around a sphere-Stokes'law.

Flow through pipes:
Types of flows-Reynold's experiment, shear stress on turbulent flow, boundary layer in pipes- Establishment of flow, velocity distribution for turbulent flow in smooth and rough pipes, resistance to flow of fluid in smooth and rough pipes, Stanton and Moody's diagram. Darcy's weisbach equation, other energy losses in pipes, loss due to sudden expansion, hydraulic gradient and total energy lines, pipes in series and in parallel, equivalent pipe, branched pipe, pipe networks, Hardy Cross method, water hammer.

UNIT-II

Drag and Lift:
Types of drag, drag on a sphere, flat plate, cylinder and airfoil, development of lift on immersed bodies like circular cylinder and airfoil.

Open Channel Flow:
Type of flow in open channels, geometric parameters of channel section, uniform flow, most economical section (rectangular and trapezoidal), specific energy and critical depth, momentum in open channel, specific force, critical flow in rectangular channel, applications of specific energy and discharge diagrams to channel transition, metering flumes, hydraulic jump in rectangular channel, surges in open channels, positive and negative surges, gradually varied flow equation and its integration, surface profiles.

UNIT-III

Compressible flow:
Basic relationship of thermodynamics continuity, momentum and energy equations, propagation of elastic waves due to compression of fluid, Mach number and its significance, subsonic and supersonic flows, propagation of elastic wave due to disturbance in fluid mach cone, stagnation pressure.

UNIT-IV

Pumps and Turbines:
Reciprocating pumps, their types, work done by single and double acting pumps. Centrifugal pumps, components and parts and working, types, heads of a pump-statics and manometric heads,. Force executed by fluid jet on stationary and moving flat vanes, Turbines-classifications of turbines based on head and specific speed, component and working of Pelton wheel and Francis turbines, cavitation and setting of turbines.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
2. Flow in Open Channels by S.Subraminayam
3. Introduction to Fluid Mechanics by Robert N.Fox & Alan T.Macnold
Soil Formation and Composition
Introduction, soil and rock, Soil Mechanics and Foundation Engineering, origin of soils, weathering, soil formation, major soil deposits of India, particle size, particle shape, inter particle forces, soil structure, principal clay minerals.

Basic Soil Properties
Introduction, three phase system, weight-volume relationships, soil grain properties, soil aggregate properties, grain size analysis, sieve analysis, sedimentation analysis, grain size distribution curves, consistency of soils, consistency limits and their determination, activity of clays, relative density of sands.

Classification of soils
Purpose of classification, classification on the basis of grain size, classification on the basis of plasticity, plasticity chart, Indian Standard Classification System.

Permeability of Soils
Introduction, Darcy's law and its validity, discharge velocity and seepage velocity, factors affecting permeability, laboratory determination of coefficient of permeability, determination of field permeability, permeability of stratified deposits.

Effective Stress Concept
Principle of effective stress, effective stress under hydrostatic conditions, capillary rise in soils, effective stress in the zone of capillary rise, effective stress under steady state hydro-dynamic conditions, seepage force, quick condition, critical hydraulic gradient, two dimensional flow, Laplace's equation, properties and utilities of flownet, graphical method of construction of flownets, piping, protective filter.

Compaction
Introduction, role of moisture and compactive effect in compaction, laboratory determination of optimum moisture content, moisture density relationship, compaction in field, compaction of cohesionless soils, moderately cohesive soils and clays, field control of compaction.

Vertical Stress below Applied Loads
Introduction, Boussinesq's equation, vertical stress distribution diagrams, vertical stress beneath loaded areas, Newmark's influence chart, approximate stress distribution methods for loaded areas, Westergaard's analysis, contact pressure.

Compressibility and Consolidation
Introduction, components of total settlement, consolidation process, one-dimensional consolidation test, typical void ratio-pressure relationships for sands and clays, normally consolidated and over consolidated clays, Casagrande's graphical method of estimating pre-consolidation pressure, Terzaghi's theory of one-dimensional primary consolidation, determination of coefficients of consolidation, consolidation settlement, Construction period settlement, secondary consolidation.
UNIT-IV

Shear Strength
Introduction, Mohr stress circle, Mohr-Coulomb failure-criterion, relationship between principal stresses at failure, shear tests, direct shear test, unconfined compression test, triaxial compression tests, drainage conditions and strength parameters, Vane shear test, shear strength characteristics of sands, normally consolidated clays, over-consolidated clays and partially saturated soils, sensitivity and thixotropy.

Earth Pressure
Introduction, earth pressure at rest, Rankine's active & passive states of plastic equilibrium, Rankine's earth pressure theory, Coulomb's earth pressure theory, Culmann's graphical construction, Rebhann's construction.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books Recommended
UNIT-I

Trigonometrical Levelling:
Introduction, height and distances-base of the object accessible, base of object inaccessible, geodetical observation, refraction and curvature, axis signal correction, difference in elevation between two points.

Triangulation:
Triangulation systems, classification, strength of figure, selection of triangulation stations, grade of triangulation, field work of triangulation, triangulation computations, introduction to E.D.M. instruments.

UNIT-II

Survey Adjustment and Treatment of Observations:
Types of errors, definition of weight of an observation, most probable values, law of accidental errors, law of weights, determination of probable error (different cases with examples) principle of least squares, adjustment of triangulation figures by method of least squares.

UNIT-III

Astronomy:
Definitions of astronomical terms, star at elongation, star at prime vertical star at horizon, star at culmination, celestial coordinate systems, Napier's rule of circular parts, various time systems: sidereal, apparent, solar and mean solar time, equation of time-its cause.

UNIT-IV

Elements of Photo-grammetry:
Introduction: types of photographs, types of aerial photographs, aerial camera and height displacements in vertical photographs, stereoscopic vision and stereoscopies, height determination from parallax measurement, flight planning.

Introduction of remote sensing and its systems:
Concept of G.I.S and G.P.S. -Basic Components, data input, storage & output.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books Recommended

1 Surveying Vol.2 by B.C.Punmia
2 Surveying Vol.3 by B.C.Punmia
3 Surveying Vol2 by T.P.Kanitkar
4 Higher Surveying by A M Chandra
B. Tech IV Semester (Civil)

CE-210E FLUID MECHANICS-II (P)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Viva-Voce</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
<td>100</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

1. To determine the coefficient of drag by Stoke's law for spherical bodies.
2. To study the phenomenon of cavitation in pipe flow.
3. To determine the critical Reynold's number for flow through commercial pipes.
4. To determine the coefficient of discharge for flow over a broad crested weir.
5. To study the characteristics of a hydraulic jump on a horizontal floor and sloping glacis including friction blocks.
6. To study the scouring phenomenon around a bridge pier model.
7. To study the scouring phenomenon for flow past a spur.
8. To determine the characteristics of a centrifugal pump.
9. To study the momentum characteristics of a given jet.
10. To determine head loss due to various pipe fittings.

B. Tech. IV Semester (Civil)

CE-212E SOIL MECHANICS (P)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Viva-Voce</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
<td>100</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

1. Visual Soil Classification and water content determination.
2. Determination of specific gravity of soil solids.
3. Grain size analysis-sieve analysis.
4. Liquid limit and plastic limit determination.
5. Field density by:
 i) Sand replacement method
 ii) Core cutter method
6. Proctor's compaction test.
7. Coefficient of permeability of soils.
8. Unconfined compressive strength test.
9. Direct shear test on granular soil sample.
10. Unconsolidated undrained (UU) triaxial shear test of fine grained soil sample.

BOOKS

Theodilite:
1. Study of theodolite, measurement of horizontal angle.
3. Permanent adjustment.

Tacheometry:
4. Tachometric constants,
5. Calculation of horizontal distance and elevation with the help of Tacheometer.

Curves:
6. Setting of simple circular curves by off-set method: off-set from chord produced,
7. Setting of simple circular curves by off-set method: off-set from long chord.
8. Setting of simple circular curves by deflection angle Method.

Triangulation:
9. An exercise of triangulation
10. Base line measurement.
Unit 1: The multidisciplinary nature of environmental studies

Definition, scope and importance.
Need for public awareness.

Unit 2: Natural Resources

Renewable and non-renewable resources:
Natural resources and associated problems:

1. Forest resources: Use and over-exploitation, deforestation, case studies, Timber extraction, mining, dams and their effects on forests and tribal people.
2. Water resources: Use and over- utilization of surface and ground water, floods, drought conflicts over water, dams—benefits and problems.
3. Mineral resources: Use and exploitation, environmental effects of extracting and mineral resources, case studies.
4. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
5. Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies.
6. Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
 a. Role of an individual in conservation of natural resources.
 b. Equitable use of resources for sustainable lifestyle.

Unit 3: Ecosystems

• Concept of an ecosystem.
• Structure and function of an ecosystem.
• Producers, consumers and decomposers.
• Energy flow in the ecosystem.
• Ecological succession.
• Food chains, food webs and ecological pyramids.
• Introduction, types, characteristic features, structure and function of the following ecosystem:
 a) Forest ecosystem
 b) Grassland ecosystem
 c) Desert Ecosystem
 d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

Unit 4: Biodiversity and its conservation

• Introduction – Definition: genetic, species and ecosystem diversity.
• Bio-geographical classification of India.
• Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values.
• Biodiversity at global, national and local level.
• India as a mega-diversity nation.
• Hot-spots of biodiversity.
• Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
• Endangered and endemic species of India.
Unit 5: Environmental Pollution.

- Definition
- Causes, effects and control measure of:
 a. Air pollution
 b. Water pollution
 c. Soil pollution
 d. Marine pollution
 e. Noise pollution
 f. Thermal pollution
 g. Nuclear hazards
- Solid waste Management: Causes, effects and control measures of urban and industrial wastes.
- Role of an individual in prevention of pollution.
- Pollution case studies.
- Disaster management: floods, earthquake, cyclone and landslides.

Unit 6: Social issues and the Environment.

- From Unsustainable to Sustainable development.
- Urban problems related to energy.
- Water conservation, rain water harvesting, watershed management.
- Resettlement and rehabilitation of people; its problems and concerns, Case studies.
- Environmental ethics: Issues and possible solutions.
- Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and Holo-caust, Case studies.
- Wasteland reclamation.
- Consumerism and waste products.
- Environment Protection Act.
- Air (Prevention and Control of Pollution) Act.
- Water (Prevention and Control of Pollution) Act.
- Wildlife Protection Act.
- Forest Conservation Act.
- Issues involved in enforcement of environmental legislation.
- Public awareness.

Unit 7: Human Population and the Environment.

- Population growth, variation among nations.
- Environment and human health.
- Human Rights.
- Value Education.
- HIV/AIDS
- Women and Child Welfare.
- Role of Information Technology in Environment and human health.
- Case Studies.

Unit 8: Field Work

- Visit to a local area to document environmental assets - river/forests/grassland/hill/mountain.
- Visit to a local polluted site – Urban/Rural/Industrial/Agricultural.
- Study of common plants, insects, birds.
- Study of simple ecosystems – pond, river, hill slopes etc.
Examination Pattern:
The question paper should carry 100 marks.

The structure of the question paper being

Part – A: Short Answer Pattern 25 Marks
Part – B: Essay type with inbuilt choice 50 Marks
Part – C: Field Work 25 Marks

INSTRUCTIONS FOR THE EXAMINERS

Part – A Question 1 is compulsory and will contain ten short-answer type questions of 2.5 marks each covering the entire syllabus.

Part – B Eight essay type questions (with inbuilt choice) will be set from the entire syllabus and the candidates will be required to answer, any four of them. Each essay type question will be of the 12½ Marks.

The examination will be conducted by the college concerned at its own level earlier than the annual examination and each student will be required to score minimum of 35% marks each in theory and practical. The marks obtained in this qualifying paper will not be included in determining the percentage of marks obtained for the award of degree. However, these will be shown in the detailed marks certificates of the student.
UNIT-I
Influence lines:
Introduction, influence lines for three hinged and two hinged arches, load position for Max.S.F. and B.M. at a section in the span.

Influence Line for statically indeterminate Beams:

UNIT-II
Fixed Arches:
Expression for H and B.M. at a section, Elastic centre.
Rolling Loads:
Introduction, Single concentrated load, uniformly distributed load longer than span, shorter than span, two point loads, several point loads, Max.B.M. and S.F.Absolute, Max.B.M.

UNIT-III
Kani's Method:
Analysis of continuous beams and simple frames, analysis of frames with different column lengths and end conditions of the bottom storey.

UNIT-IV
Approximate Analysis of frames:
(i) for vertical loads, (ii) for lateral loads by Portal method & Cantilever method.

Matrix Methods
Introduction, Stiffness Coefficients, Flexibility Coefficients, Development of flexibility & stiffness matrices for plane frame, Global axis and local axis, analysis of plane frame, pin jointed and rigid jointed.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books Recommended:
1. Indeterminate structures, R.L.Jindal S.Chand & Co.,N.Delhi.
B. Tech. V Semester (Civil)
CE-303E DESIGN OF STEEL STRUCTURES-I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Theory</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4.0</td>
<td>Sessional</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration of Exam</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

UNIT-I

Introduction:

Connections:
Importance, various types of connections, simple and moment resistant, riveted, bolted and welded connections.

Design of Tension Members:
Introduction, types of tension members, net sectional areas, design of tension members, lug angles and splices.

UNIT-II

Design of Compression Members:
Introduction, effective length and slenderness ratio, various types of sections used for columns, built up columns, necessity, design of built up columns, laced and battened columns including the design of lacing and battens, design of eccentrically loaded compression members.

Column Bases and Footings:
Introduction, types of column bases, design of slab base and gussested base, design of gussested base subjected to eccentrically loading, design of grillage foundations.

UNIT-III

Design of Beams:
Introduction, types of sections, general design criteria for beams, design of laterally supported and unsupported beams, design of built up beams, web buckling, web crippling and diagonal buckling.

UNIT-IV

Gantry Girders:
Introduction, various loads, specifications, design of gantry girder.

Plate Girder:
Introduction, elements of plate girder, design steps of a plate girder, necessity of stiffeners in plate girder, various types of stiffeners, web and flange splices (brief introduction), Curtailment of flange plates, design beam to column connections: Introduction, design of framed and seat connection.

DRAWINGS:
1. Structural drawings of various types of welded connections (simple and eccentric)
2. Beam to column connections (framed & seat connections)
3. Column bases- slab base, gussested base and grillage foundation.
4. Plate girder.
5. Roof truss.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
B. Tech. V Semester (Civil)
CE-305E DESIGN OF CONCRETE STRUCTURES-I

L T P CREDIT Theory : 70
3 - - 3.0 Sessional : 30
Total : 100 Duration of Exam : 3 Hrs.

UNIT-I
Elementary treatment of concrete technology:
Physical requirements of cement, aggregate, admixture and reinforcement, Strength and durability, shrinkage and creep. Design of concrete mixes, Acceptability criterion, I.S.Specifications.

Design Philosophies in Reinforced Concrete:
Working stress and limit state methods, Limit state v/s working stress method, Building code, Normal distribution curve, characteristic strength and characteristics loads, design values, Partial safety factors and factored loads, stress-strain relationship for concrete and steel.

UNIT-II
Working Stress Method:
Basic assumptions, permissible stresses in concrete and steel, design of singly and doubly reinforced rectangular and flanged beams in flexure, steel beam theory, inverted flanged beams, design examples.

Limit State Method:
Basic assumptions, Analysis and design of singly and doubly reinforced rectangular flanged beams, minimum and maximum reinforcement requirement, design examples.

UNIT-III
Analysis and Design of Sections in shear bond and torsion:
Diagonal tension, shear reinforcement, development length, Anchorage and flexural bond, Torsional, stiffness, equivalent shear, Torsional reinforcement, Design examples.

Columns and Footings:
Effective length, Minimum eccentricity, short columns under axial compression, Uniaxial and biaxial bending, slender columns, Isolated and wall footings, Design examples.

Serviceability Limit State:
Control of deflection, cracking, slenderness and vibrations, deflection and moment relationship for limiting values of span to depth, limit state of crack width, Design examples.

UNIT-IV
Concrete Reinforcement and Detailing:
Requirements of good detailing cover to reinforcement, spacing of reinforcement, reinforcement splicing, Anchoring reinforcing bars in flexure and shear, curtailment of reinforcement.

One way and Two Ways Slabs:
General considerations. Design of one way and two ways slabs for distributed and concentrated loads, Non-rectangular slabs, openings in slabs, Design examples.

Retaining Walls:
Classification, Forces on retaining walls, design criteria, stability requirements, Proportioning of cantilever retaining walls, counterfort retaining walls, criteria for design of counter-forts, design examples.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.
Books:
5. SP-16(S&T)-1980, 'Design Aids for Reinforced Concrete to IS:456, BIS, N. Delhi.
7. Reinforced Concrete Design – Pillai and Menon, TMH, New Delhi.
B. Tech. V Semester (Civil)
CE-307E HYDROLOGY

L T P CREDIT
3 1 - 3.5

<table>
<thead>
<tr>
<th>Theory</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessional</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>3 Hrs.</td>
</tr>
</tbody>
</table>

UNIT-I

Introduction:
Hydrologic cycle, scope and application of hydrology to engineering problems, drainage basins and its characteristics, stream geometry, hypsometric curves.

Precipitation:
Forms and types of precipitation, characteristics of precipitation in India, measurement of precipitation, recording and non recording rain-gauge, rain-gauge station, rain-gauge network, estimation of missing data, presentation of rainfall data, mean precipitation, depth -area -duration relationship, frequency of point rainfall, intensity -duration- frequency curves, probable max. precipitation.

UNIT-II

Evaporation & Transpiration:
Process, evaporimeters and empirical relationships, analytical method, reservoir evaporation and methods of its control, transpiration, evapotranspiration and its measurement, Penman's equation and potential evapotranspiration.

Infiltration:
Infiltration process, initial loss, infiltration capacity and measurement of infiltration, infiltration indices.

UNIT-III

Runoff:
Factor affecting run-off, estimation of runoff, rainfall-run off relationships, measurement of stage-staff gauge, wire gauge, automatic stage recorder and stage hydrograph, measurement of velocity-current meters, floats, area velocity method, moving boat and slope area method, electromagnetic, ultra-sonic and dilution methods of stream flow measurement, stage discharge relationship.

Hydrograph:
Discharge hydrograph, components and factors affecting shape of hydrograph, effective rainfall, unit hydrograph and its derivation, unit hydrograph of different durations, use and limitations of UH, triangular UH, Snyder's synthetic UH, floods, rational methods, empirical formulae, UH method, flood frequency methods, Gumbel's method, graphical method, design flood.

UNIT-IV

Ground Water:
Occurrence, types of aquifers, compressibility of aquifers, water table and its effects on fluctuations, wells and springs, movement of ground water, Darcy's law, permeability and its determination, porosity, specific yield and specific retention, storage coefficient, transmissibility.

Well Hydraulics:
Steady state flow to wells in unconfined and confined aquifers.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
1. Engineering Hydrology by K.Subramanya, TMH, New Delhi
3. Hydrology for Engineers by Linsely, Kohler, Paulhus.
4. Elementary Hydrology by V.P.Singh.
UNIT-I
Sub-Surface Exploration
Purpose, stages in soil exploration, depth and lateral extent of exploration, guidelines for various types of structures, ground water observations, excavation and boring methods, soil sampling and disturbance, major types of samplers, sounding methods-SCPT, DCPT, SPT and interpretation, geophysical methods, pressure-meter test, exploration logs.

UNIT-II
Drainage & Dewatering
Introduction, ditches and sumps, well point systems, shallow well system, deep well drainage, vacuum method, Electro-osmosis, consolidation by sand piles.

UNIT-III
Shallow Foundations-I
Design criteria for structural safety of foundation(i) location of footing,(ii) shear failure criterion, (iii) settlement criterion, ultimate bearing capacity, modes of shear failure, Rankine's analysis Tergazi's theory, Skempton's formula, effect of fluctuation of G.W.T., effect of eccentricity on bearing capacity, inclined load, I.S Code recommendations, factors affecting bearing capacity, methods of improving bearing capacity.

Shallow Foundations-II
Various causes of settlement of foundation, allowable bearing pressure based on settlement, settlement calculation, elastic and consolidation settlement, allowable settlement according to I.S.Code. Plate load test and its interpretation, bearing capacity from penetration tests, design bearing capacity.

Shallow Foundations-III
Situation suitable for the shallow foundations, types of shallow foundations and their relative merits, depth of foundation, footing on slopes, uplift of footings, conventional procedure of proportioning of footings, combined footings, raft foundations, bearing capacity of raft in sands and clays, various methods of designing rafts, floating foundations.

UNIT-IV
Pile Foundations-I
Introduction, necessity of pile foundations, classification of piles, load capacity, static analysis, analysis of pile capacity in sands and clays, dynamic analysis, pile load tests, negative skin friction, batter piles, lateral load capacity, uplift capacity of single pile, under-reamed pile.

Pile Foundations-II
Group action in piles, pile spacing, pile group capacity, stress on lower strata, settlement analysis, design of pile caps, negative skin friction of pile group, uplift resistance of pile group, lateral resistance, batter pile group.

UNIT-IV
Drilled Piers and Caisson Foundations
Drilled piers-types, uses, bearing capacity, settlement, construction procedure. Caissons-Types, bearing capacity and settlement, construction procedure. Well foundations-shapes, depth of well foundations, components, factors affecting well foundation design lateral stability, construction procedure, sinking of wells, rectification of tilts and shifts, recommended values of tilts & shifts as per I.S.3955.
Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books Recommended

6. Foundation Design by Teng, Prentice Hall, India.
B. Tech. V Semester (Civil)
CE-311E PROJECT PLANNING & MANAGEMENT

L T P CREDIT Theory : 70
3 1 - 3.5 Sessional : 30
Total : 100
Duration of Exam : 3 Hrs.

UNIT-I

Construction Management
Significance, objectives and functions of construction management, types of constructions, resources for construction industry, stages for construction, construction team, engineering drawings.

Construction Contracts & Specifications
Introduction, types of contracts, contract document, specifications, important conditions of contract, arbitration.

UNIT-II

Construction Planning
Introduction, work breakdown structure, stages in planning-pre-tender stages, contract stage, scheduling, scheduling by bar charts, preparation of material, equipment, labour and finance schedule, limitation of bar charts, milestone charts.

Construction Organization
Principles of Organization, communication, leadership and human relations, types of Organizations, Organization for construction firm, site organization, temporary services, job layout.

UNIT-III

Network Techniques in Construction Management-I: CPM
Introduction, network techniques, work break down, classification of activities, rules for developing networks, network development-logic of network, allocation of time to various activities, Fullkerson's rule for numbering events, network analysis, determination of project schedules, critical path, ladder construction, float in activities, shared float, updating, resources allocation, resources smoothing and resources leveling.

Network Techniques in Construction Management-II: PERT
Probability concept in network, optimistic time, pessimistic time, most likely time, lapsed time, deviation, variance, standard deviation, slack critical path, probability of achieving completion time, central limit theorem.

UNIT-IV

Cost-Time Analysis
Cost versus time, direct cost, indirect cost, total project cost and optimum duration, contracting the network for cost optimization, steps in time cost optimization, illustrative examples.

Inspection & Quality Control
Introduction, principles of inspection, enforcement of specifications, stages in inspection and quality control, testing of structures, statistical analysis.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books Recommended
1 Construction Planning & Management by P.S.Gehlot & B.M.Dhir, Wiley Eastern Ltd.
2 PERT & CPM -Principles & Applications by L.S.Srinath. Affiliated East-westPress(P)Ltd.
3 Project Planning & Control with PERT & CPM by B.C.Punmia & K.K.Khandelwal,Lakshmi Pub. Delhi
B. Tech V Semester (Civil)
CE-313E STRUCTURAL MECHANICS -II (P)

L T P CREDIT Max.Marks : 100
- - 2 1.0 Viva-Voce : 70
- - 2 1.0 Sessional : 30

1. Experiment on a two hinged arch for horizontal thrust & influence line for Horizontal thrust
2. Experimental and analytical study of a 3-bar pin-jointed Truss.
3. Experimental and analytical study of deflections for unsymmetrical bending of a Cantilever beam.
4. Begg's deformeret- verification of Muller Breslau principle.
5. Experimental and analytical study of an elastically coupled beam.
7. To study the cable geometry and statics for different loading conditions.
8. To plot stress-strain curve for concrete.

B. Tech. V Semester (Civil)
CE-315E CONCRETE LAB (P)

L T P CREDIT Max.Marks : 100
- - 2 1.0 Viva-Voce : 70
- - 2 1.0 Sessional : 30

Tests on Cement
2. Fineness of cement by Sieve analysis and Blaine's air permeability method.
4. Setting time of cement, initial and final.
5. Compressive strength of cement.

Tests on Aggregate
1. Moisture content and bulking of fine aggregate.
2. Fineness modulus of coarse and fine aggregates.

Tests on Concrete
1. Workability of cement concrete by (a) Slump test, (b) Compaction factor test, (c) Flow table test,
2. Compressive strength of concrete by (a) Cube test, (b)Cylinder test
4. Modulus of rupture of Concrete by flexure test
5. Bond strength between steel bar and concrete by pull-out test
6. Non-destructive testing of concrete

Books Recommended:
3. Concrete Technology – Nevellie, Pearson Education.
B. Tech. V Semester (Civil)
CE-317E GEOTECHNOLOGY (P)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Viva-Voce</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.0</td>
<td></td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

2. Shrinkage Limit Determination.
5. Consolidated Undrained (CU) Triaxial Test with Pore Water Pressure measurement.
6. Consolidation Test.
7. Undisturbed Sampling.
9. Dynamic Cone Penetration Test.
10. Model Plate Load Test.

Books:

B. Tech. V Semester (Civil)
CE-319E SURVEY CAMP

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
UNIT-I

Elementary Plastic Analysis and Design:
Introduction, Scope of plastic analysis, ultimate load carrying capacity of tension members and compression members, flexural members, shape factor, mechanisms, plastic collapse, analysis, plastic analysis applied to steel beams and simple portal frames and design.

UNIT-II

Design of Water Tanks:
Introduction, permissible stresses, design of circular, rectangular and pressed steel tanks including staging.

Design of Steel Stacks:
Introduction, various loads to be considered for the design of steel stacks, design of steel stacks including foundation.

UNIT-III

Towers:
Transmission line towers, microwave towers, Design loads, classification, design procedure and specification.

Cold Formed Sections:
Introduction and brief description of various types of cold formed sections, local buckling, concepts of effective width and effective sections, elements with stiffeners, design of compression and bending elements.

UNIT-IV

Industrial Buildings:
Loads, general arrangement and stability, design considerations, design of purlins, design of roof trusses, industrial building frames, bracings and stepped columns.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
UNIT-I

Introduction:
Irrigation-necessity, advantages, disadvantages, impact of irrigation on human environment, need and development of irrigation in India, crops and crop seasons, ideal cropping pattern and high yielding varieties of crops.

Soil-water relationship and irrigation methods:
Soil-water relationship, root zone soil water, infiltration, consumptive use, field capacity, wilting point, available moisture in soil, GCA, CCA, intensity of irrigation, delta, base period, Kor depth, core period, frequency of irrigation, duty of water, relation between delta, duty and base period, irrigation requirement, flooding methods, border strip method, check basin and furrow method, assessment of irrigation water, sprinkler irrigation, favorable conditions, sprinkler systems, hydraulics of sprinkler irrigation, planning, design and maintenance of sprinkler systems, drip irrigation-components parts, advantages and limitations, suitability of drip irrigation.

UNIT-II

Canal irrigation:
Component of canal distribution system, alignment of channels, losses in irrigation channels, design discharge, silt theories and design of alluvial channels, comparison of Kennedy's and Lacey's theories, canal section and design procedure, Garrets and Lacey's diagrams.

UNIT-III

Water logging and land reclamation:
Water logging-effects, causes and measures of prevention, lining of irrigation channels, types of lining, design of lined channel land drainage, open drains, design considerations, advantages of tile drains, depth of tile drains, layout of closed drains, discharge and spacing of closed drains, diameter of tile drain, outlets for tile drains, maintenance of tile drains, purpose of land reclamation and methods of land reclamation.

UNIT-IV

River Training:
Classification of rivers, river training and its objectives, classification of river training works, methods of river training, marginal embankments, guidebanks, spurs, cutoffs, bank pitching and launching apron.

Canal outlets:
Classification, requirements of a good outlet, design of pipe, APM and open flume outlet, flexibility proportionality, setting and sensitivity of outlet.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
1. Irrigation, Water Resources and Water Power Engg. by P.N.Modi.
5. Irrigation-Theory & Practice by A.M. Michael.
6. Irrigation – Theory & Practice by G.L. Asawa
B. Tech. VI Semester (Civil)
CE-306E WATER RESOURCES & SYSTEMS ENGINEERING

L T P CREDIT
3 1 - 3.5

<table>
<thead>
<tr>
<th>Theory</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessional</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>3 Hrs.</td>
</tr>
</tbody>
</table>

UNIT-I

Water Resources Planning:
Role of water in national development, assessment of water resources, planning process, environmental consideration in planning, system analysis in water planning, some common problems in project planning, functional requirements in multipurpose projects, multipurpose planning, basinwise planning, long term planning.
Reservoir planning-dependable yield, sedimentation in reservoir, reservoir capacity, empirical-area reduction method.

UNIT-II

Economic and Financial Analysis:
Meaning and nature of economic theory, micro and macro economics, the concept of equilibrium, equivalence of kind, equivalence of time and value, cost benefit, discounting factors and techniques, conditions for project optimality, cost benefit analysis, cost allocation, separable and non-separable cost, alternate justifiable and remaining benefit methods, profitability analysis.

UNIT-III

Water Resources Systems Engineering:
Concept of system's engineering, optimal policy analysis, simulation and simulation modeling, nature of water resources system, analog simulation, limitations of simulation, objective function, production function, optimality condition, linear, non-linear and dynamic programming, applications to real time operations of existing system, hydrologic modeling and applications of basic concepts.

UNIT-IV

Applications of System Approach in Water Resources:
Applications of system engineering in practical problems like hydrology, irrigation and drainage engineering, distribution network, mathematical models for forecasting and other water resources related problems.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
1. Water Resources Engineering by Linseley and Franzini
2. Economics of Water Resources Engineering by James and Lee.
3. Optimisation Theory and Applications by S.S.Roy
5. Operational Research-An Introduction by Hamdy A.Taha.
B. Tech. VI Semester (Civil)
CE-308E GEOTECHNOLOGY-II

L T P CREDIT
3 1 - 3.5

Theory : 70
Sessional : 30
Total : 100
Duration of Exam : 3 Hrs.

UNIT-I

Earth Dams:
Introduction, types of sections, earth dam foundations, causes of failure and criteria for safe design, control of seepage through the embankment, control of seepage through the foundation, drainage of foundations, criterion for filter design. Introduction to rock fill dams.

Stability of slopes:
Causes of failure, factors of safety, stability analysis of slopes-total stress analysis, effective stress analysis, stability of infinite slopes types of failures of finite slopes, analysis of finite slopes-mass procedure, method of slices, effect of pore pressure, Fellinius method to locate center of most critical slip circle, friction circle method, Tayler's stability number, slope stability of earth dam during steady seepage, during sudden draw down and during and at the end of construction.

UNIT-II

Braced Cuts:
Depth of unsupported vertical cut, sheeting and bracing for deep excavation, movements associated with sheeting and bracing, modes of failure of braced cuts, pressure distribution behind sheeting.

Cofferdams:
Introduction, types of cofferdams, design and lateral stability of braced cofferdams, design data for Cellular cofferdams, stability analysis of cellular cofferdams on soil and rock, inter-lock stresses.

UNIT-III

Cantilever Sheet Piles:
Purpose of sheet piles, cantilever sheet piles, depth of embedment in granular soils-rigorous method, simplified procedure, cantilever sheet pile, penetrating clay and limiting height of wall.

Anchored Bulkheads:
Methods of design, free earth support method in cohesionless and cohesive soils, fixed earth support method in cohesionless soils-Blum's equivalent beam method.

UNIT-IV

Soil Stabilization:
Soil improvement, shallow compaction, mechanical treatment, use of admixtures, lime stabilization, cement stabilization, lime fly ash stabilization, dynamic compaction and consolidation, Bituminous stabilization, chemical stabilization, pre-compression, lime pile and column, stone column, grouting, reinforced earth.

Basics of Machine Foundations:
Terminology, characteristics elements of a vibratory systems, analysis of vibratory motions of a single degree freedom system-undamped free vibrations, undamped forced vibrations, criteria for satisfactory action of a machine foundation, degrees of a freedom of a block foundation, Barken's soil spring constant, Barken's method of a determining natural frequency of a block foundation subjected to vertical oscillations.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.
Books Recommended:
5. Foundation Design by Teng, Prentice Hall.
B. Tech. VI Semester (Civil)
CE-310E TRANSPORTATION ENGINEERING -I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Theory : 70
Sessional : 30
Total : 100
Duration of Exam : 3 Hrs.

UNIT-I

Introduction:

Highway Plans, Highway Alignment and Surveys:
Main features of 20 years road development plans in India. Requirements of an ideal highway alignment. Factors affecting alignment. Surveys for highway alignment.

UNIT-II

Cross Section Elements and Sight Distance Considerations:

Design Of Horizontal and Vertical Alignment:

UNIT-III

Traffic Characteristics And Traffic Surveys:
Road user and vehicular characteristics. Traffic studies such as volume, speed and O & D study. Parking and accident studies. Fundamental diagram of traffic flow. Level of service. PCU. Capacity for non-urban roads. Causes and preventive measures for road accidents.

Traffic Control Devices:

UNIT-IV

Highway Materials:Soil And Aggregates:

Bituminous Materials and Bituminous Mixes:
Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
UNIT-I

Water Quantity:

UNIT-II

Water Quality:

UNIT-III

Water Treatment:
Objectives, treatment processes and their sequence in conventional treatment plant, sedimentation – plain and aided with coagulation. Types, features and design aspects. Mixing basins and Flocculation units. Filtration – mechanism involved, types of filters, slow and rapid sand filtration units (features and design aspects). Disinfection principles and aeration.

UNIT-IV

Water Distribution:

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
B. Tech. VI Semester (Civil)
CE-314E TRANSPORTATION ENGINEERING-I (P)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Viva-Voce</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.0</td>
<td>100</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

1. Aggregate Impact Test.
2. Los-Angeles Abrasion Test on Aggregates.
3. Dorry's Abrasion Test on Aggregates.
4. Deval Attrition Test on Aggregates.
5. Crushing Strength Test on Aggregates.
6. Penetration Test on Bitumen.
7. Ductility Test on Bitumen.
8. Viscosity Test on Bituminous Material
9. Softening Point Test on Bitumen.
10. Flash and Fire Point Test on Bitumen.

B. Tech. VI Semester (Civil)
CE-316E ENVIRONMENTAL ENGINEERING-I (P)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Viva-Voce</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.0</td>
<td>100</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

1. To determine the pH value of a given sample of water waste water.
2. To determine the turbidity in given water waste water sample.
3. To determine the acidity of given sample of water waste water.
4. To determine the alkalinity of given sample of water waste water.
5. To determine temporary and permanent hardness in a given water sample.
6. To determine the chlorine does required for a given water sample.
7. To determine total suspended, suspended, dissolved settable solids in a sewage sample.
8. To determine the chloride concentration in a given sample of waste water.
9. To determine the sulphate concentration in given water sample.
B. Tech. VI Semester (Civil)
CE-318E COMPUTER APPLICATION-I (P)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Viva-Voce</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.5</td>
<td></td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

 a) Bisection method, (b) Newton-Raphson method
3. Solution of system of non-linear equation using fixed point / Newton Raphson / modified Newton-Raphson method.
5. Analysis of Plane frame and space Frame using automated software.
6. Analysis of a three storeyed and ten storeyed building using automated software.
7. Introduction to Auto CAD.

Students should be encouraged to write computer programs to solve different civil engineering problems.
B.TECH (CIVIL ENGINEERING)
VII SEMESTER
B. Tech. VII Semester (Civil)
CE-401E DESIGN OF CONCRETE STRUCTURES-II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hrs.</td>
</tr>
</tbody>
</table>

UNIT-I

Continuous Beams:
Basic assumptions, Moment of inertia, settlements, Modification of moments, maximum moments and shear, beams curved in plan-analysis for torsion, redistribution of moments for single and multi-span beams, design examples.

Prestressed Concrete:
Basic principles, classification of prestressed members, various prestressing systems, losses in prestress, initial and final stress conditions, analysis and design of sections for flexure and shear, load balancing concept, I:S:Specifications. End blocks-Analysis of stresses, Magnel's method, Guyon's method, Bursting and spalling stresses, design examples.

UNIT-II

Flat slabs and staircases:
Advantages of flat slabs, general design considerations, approximate direct design method, design of flat slabs, openings in flat slab, design of various types of staircases, design examples.

Foundations:
Combined footings, raft foundation, design of pile cap and piles, under-reamed piles, design examples.

UNIT-III

Water Tanks, Silos and Bunkers:
Estimation of Wind and earthquake forces, design requirements, rectangular and cylindrical underground and overhead tanks, Intze tanks, design considerations, design examples. Silos and Bunkers-Various theories, Bunkers with sloping bottoms and with high side walls, battery of bunkers, design examples.

UNIT-IV

Building Frames:
Introduction, Member stiffnesses, Loads, Analysis for vertical and lateral loads, Torsion in buildings, Ductility of beams, design and detailing for ductility, design examples.

Yield Line Theory:
Basic assumptions, Methods of analysis, yield line patterns and failure mechanisms, analysis of one way and two way rectangular and non-rectangular slabs, effect of top corner steel in square slabs, design examples.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
2. Pre-Stressed Concrete, N.Krishna Raju, TMH Pub., N., Delhi.
5. IS 1343-1980, IS Code of Practice for Prestressed Concrete.
B. Tech. VII Semester (Civil)
CE-403E IRRIGATION ENGINEERING-II

L T P CREDIT
3 1 - 3.5

Theory : 70
Sessional : 30
Total : 100
Duration of Exam: 3 Hrs.

UNIT-I
Regulation works:
Canal falls-necessity and location, development of falls, design of cistern element, roughening
devices, design of Sarda type fall, and design of straight Glacis fall. Off-take alignment, cross-
regulator and distributory, head regulators, devices to control silt entry into the off-taking
channel and silt ejector, canal escapes, types of escapes.

UNIT-II
Cross drainage works:
Classification and their selection, hydraulic design aspects of aqueducts, syphon aqueducts, super
passage, canal syphon and level crossing, design of transitions.
Diversion canal headworks:
Various components and their functions, layout plan, selection of site for diversion headworks,
Bligh's creep theory, Khosla's method of independent variables, use of Khosla's curves, various
corrections, silt excluders.

UNIT-III
Storage Headworks:
Types of dams, selection of a site, gravity dam-two dimensional design, forces acting, stability
criterion, elementary profile of a dam, cutoffs and drainage galleries, arch dams-constant angle
and constant radius arch dam, simple design and sketches, most economical angle, Earth dam,
design principles, seepage through earth dams, seepage line, control of seepage, design of filters.

UNIT-IV
Spillways and Energy Dissipaters:
Essential requirements of spillway and spillway's capacity, types of spillways and their
suitability, Ogee spillways, chute, side channel, shaft and syphon spillways, energy dissipation
below spillways, stilling basins, USBR and I.S. Stilling Basins.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each
unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at
least ONE question from each unit.

Books:
1 Irrigation, Water Resources and Water Power Engineering by P.N.Modi.
2 Fundamentals on Irrigation Engineering by Bharat Singh.
3 Irrigation Engineering and Hydraulic Structures by S.K.Garg.
UNIT-I

Design of Flexible Pavements:
Types of pavements. Flexible and rigid pavements. Components of a pavement and their functions. Factors affecting design of pavements. Design of thickness of a flexible pavement by Group Index method, CBR method (including latest IRC guidelines), Triaxial method and Burmister’s method.

Design Of Rigid Pavements:

UNIT-II

Highway Construction : Non-Bituminous Pavements:

Construction of Bituminous Pavements:
Various types of bituminous constructions. Prime coat, tack coat, seal coat and surface dressing. Construction of BUSG, Premix carpet, BM, DBM and AC. Brief coverage of machinery for construction of bituminous roads: bitumen boiler, sprayer, pressure distributor, hot-mix plant, cold-mix plant, tipper trucks, mechanical paver or finisher, rollers. Mastic asphalt. Introduction to various IRC and MOST specifications.

UNIT-III

Highway Maintenance:

Highway Drainage and Hill Roads:
Surface drainage: types, brief design. Types of sub-surface drainage. Special characteristics of hill roads: geometrics, hair pin bends, construction of hill roads, drainage of hill roads, maintenance problems of hill roads

UNIT-IV

Highway Economics and Finance
Tunnels
Sections of tunnels: advantages, limitations and suitability of each section. Shaft. Pilot tunnel. Driving tunnel in rocks: sequence of construction operations, full face method, heading and bench method, drift method. Driving tunnels in soft ground: sequence of construction operations, needle beam method, shield tunneling, compressed air tunneling.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Recommended Books
3. Principles of Pavement Design by Yoder,E.J & Witczak,M.W., John Wiley and Sons, USA.
B. Tech. (Civil) VII Semester
CE-407E SEWERAGE AND SEWAGE TREATMENT

L T P CREDIT Theory : 70
2 1 - 2.5 Sessional : 30
Total : 100 Duration of Exam : 3 Hrs.

UNIT-I

Collection of sewage:

UNIT-II

Sewage Characterization:
Quality parameters- BOD, COD, Solids, D.O., Oil & Grease. Indian Standards for disposal of effluents into inland surface sources and on land.

UNIT-III

Sewage Treatment:
Objectives, sequence and efficiencies of conventional treatment units. Preliminary treatment, screening and grit removal units. Theory and design aspects of primary treatment, secondary treatment- activated sludge process & its modifications, Tricking filter, sludge digestion and drying beds. Stabilization pond, aerated lagoon, UASB process, septic tank and Imhoff tank.

UNIT-IV

Disposal of Sewage:
Disposal of sewage by dilution – self-purification of streams. Sewage disposal by irrigation (sewage treatment).

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Recommended Books:
Preparing drawing sheets showing reinforcement details in case of:

1. Flat slabs
2. Underground and Overhead Water Tanks.
4. T-Beam Bridge.
5. Silo/Bunker.

Complete design and drawing of the following:

1. Design of weirs and barrages on permeable foundation for surface and sub surface flow conditions.
4. Design of Syphon Aqueduct.
5. Design of Sarda type fall & sloping glacis fall.
6. Seepage line in a homogeneous earth dams on impermeable foundation with horizontal drainage.
7. Design of Ogee Spillway and stilling basin.

Note: Emphasis would be given to the computer aided designs of some of above structures.
B. Tech. VII Semester (Civil)
PROJECT-I

CE-429E GEOTECHNICAL ENGINEERING

OR

CE-431E TRANSPORTATION ENGINEERING

OR

CE-433E ENVIRONMENTAL ENGINEERING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.5</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

B. Tech. VII Semester (Civil)
CE-435E PRACTICAL TRAINING REPORT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
B.TECH (CIVIL ENGINEERING)
8th SEMESTER
B. Tech. VIII Semester (Civil)
CE-402E Bridge Engineering

L T P CREDIT Theory : 70
3 1 - 3.5 Sessional : 30
Total : 100
Duration of Exam : 3 Hrs.

UNIT-I
Introduction:
Definition, components of bridge, classification of bridges, selection of site, economical span, aesthetics consideration, necessary investigations and essential design data.

Standard Specifications for Roads and Railways Bridges:
General, Indian Road Congress Bridge Code, width of carriage way, clearance, various loads to be considered for the design of roads and railway bridges, detailed explanation of IRC standard live loads.

UNIT-II
Design Consideration for R. C. C. Bridges:
Various types of R.C.C. bridges (brief description of each type), design of R.C.C. culvert and T-beam bridges.

UNIT-III
Design Consideration for Steel Bridges:
Various types of steel bridges (brief description of each), design of truss and plate girder bridges.

UNIT-IV
Hydraulic & Structural Design:
Piers, abutments, wing-wall and approaches.

Brief Description:
Bearings, joints, articulation and other details.

Bridge Foundation:
Various types, necessary investigations and design criteria of well foundation.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:
B. Tech. (Civil) VIII Semester
CE – 404E Railway and Airport Engineering

L T P CREDIT
2 1 - 2.5

Theory : 70
Sessional : 30
Total : 100
Duration of Exam : 3 Hrs

UNIT-I
Introduction, Permanent Way And Rails
Rail transportation and its importance in India. Permanent way: requirements and components.

Sleepers, Fastenings and Ballast

UNIT-II
Points and Crossings

Signaling, Interlocking and Train Control

UNIT-III
Geometric Design of the Track

Stations, Yards and Track Maintenance

UNIT-IV
Introduction and Airport Planning
Air transportation, its importance and characteristics, status in India. Layout plan of an airport and its basic elements: terminal area, apron, taxiway, runway, hanger. Aircraft characteristics, their effect on elements of an airport. Site selection of an airport. Classification of airports.

Runway Layout and Pavement Design

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.
Books:
5. Air Transportation Planning and Design by Virender Kumar & Satish Chandra, Galgotia Publications, N.Delhi.
B. Tech. VIII Semester (Civil)
CE-406E Industrial Waste Water Treatment

L T P CREDIT
3 1 - 3.5

Theory : 70
Sessional : 30
Total : 100

Duration of Exam: 3 Hrs

UNIT-I
Effects of industrial wastes on streams, sewerage systems and wastewater treatment plants.

UNIT-II
Minimizing the effects of industrial effluents on waste water treatment plants and receiving streams-conservation of water, process change, reuse of waste water, volume reduction, strength reduction, neutralization, equalization and proportioning.

UNIT-III
Population equivalent. Industrial effluent standards for disposal into inland surface water sources and on land for irrigation.

UNIT-IV
Study of the following Industries from waste generation, quality and its treatment including brief overview of manufacturing process:
Textile, tannery, sugar mill, distillery, dairy, pulp & paper, metal plating, oil refinery, nitrogenous fertilizers, thermal power plants and radio active wastes.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:

1. Industrial and Hazardous Waste Treatment by N.L.Nemerow & A.Dasgupta.
2. Industrial Effluents by N.Manivasakam.
B. Tech. VIII Semester (Civil)
CE-408E Estimation and Accounts

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Viva-Voce</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1.0</td>
<td>100</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

UNIT-I

Estimate:
Principles of estimation, units, items of work, different kinds of estimates, different methods of estimation, estimation of materials in single room building, two roomed building with different sections of walls, foundation, floors and roofs, R.B. and R.V.C.C. works, Plastering, White-washing, Distempering and painting, doors and windows, lump sum items, Estimates of canals, roads etc.

UNIT-II

Specification of Works:
Necessity of specifications, types of specifications, general specifications, specification for bricks, cement, sand, water, lime, reinforcement; Detailed specifications for Earthwork, Cement, concrete, brick work, floorings, D.P.C., R.C.C., cement plastering, white and colour washing, distempering, painting.

UNIT-III

Rate Analysis:
Purpose, importance and requirements of rate analysis, units of measurement, preparation of rate analysis, procedure of rate analysis for items:- Earthwork, concrete works, R.C.C. works, reinforced brick work, plastering, painting, finishing(white-washing, distempering).

UNIT-IV

Public Works Account:
Introduction, function of P.W. department, contract, guidelines, types of contracts, their advantages and disadvantages, Tender and acceptance of tender, Earnest money, security money, retention money, measurement book, cash book, preparation, examination and payment of bills, first and final bills, administrative sanction, technical sanction.

Books

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.
B. Tech. (Civil) VIII Semester
CE - 426E TRANSPORTATION ENGINEERING – II (P)

L T P CREDIT Max.Marks : 100
- - 2 1.0 Viva-Voce : 70

Sessional : 30

LIST OF EXPERIMENTS

1. Flakiness and Elongation Index of aggregates.
2. Specific gravity and water absorption test on aggregates.
3. Specific gravity of bitumen.
4. Proportioning of aggregates.
6. Stripping test on aggregates.
7. Determination of bitumen content.
8. CBR lab test on soil.
10. Traffic speed study using videography technique.

B. Tech. VIII Semester (Civil)
CE-428E ENVIRONMENTAL ENGINEERING-II (P)

L T P CREDIT Max.Marks : 100
- - 2 1.0 Viva-Voce : 70

Sessional : 30

1. To determine the acidity of a sewage sample.
2. To determine the alkalinity of a sewage sample.
3. To determine total, suspended, dissolved and settable solids in a sewage sample.
4. To determine volatile and fixed solids in a sewage sample.
5. To determine oil and grease in a sewage sample.
6. To determine the chloride concentration in a sewage sample.
7. To determine the sulphate concentration in a sewage sample.
8. To determine the B.O.D. of a given sewage sample.
9. To determine the C.O.D. of a given sewage sample.
10. To determine the T.O.C. of a given sewage sample.
11. To determine the fecal count of a given sewage sample.
12. Microscopic studies of a sewage.
CE-430E STRUCTURAL ENGINEERING

OR

CE-432E WATER RESOURCES ENGINEERING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.5</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

CE-434E SEMINAR

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Sessional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.5</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

CE-436E GENERAL FITNESS & PROFESSIONAL APTITUDE

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Max.Marks</th>
<th>Viva-Voce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
B.TECH (CIVIL ENGINEERING)
Departmental Elective –I
Syllabus
Departmental Elective-I
B. Tech. VII Semester (Civil)
CE-413E HYDRO ELECTRIC POWER DEVELOPMENT

L T P CREDIT
3 1 - 3.5

Theory : 70
Sessional : 30
Total : 100
Duration of Exam : 3 Hrs

UNIT-I
Introduction:
Sources of power, estimation of water power, necessity and importance of harnessing small hydro power, flow duration and power duration curves, load curve, load factors, capacity factors, utilization factors, firm and secondary power.

Types of Hydro Power Plants:
Elements of Hydro power, classification of hydro-power plants, run-of-river plants, storage plants diversion canal development, pumped storage plants, tidal power plants, base load and peak load plants in a power grid.

UNIT-II
Intakes:
Intake structures, functions and their types, components of intakes-forebay, trash racks, gates and valves, force required to operate gates.

Conveyance System:
Penstocks, design criterion, economical diameter anchor blocks, cradles and footings, water hammer, instantaneous closure of power canal, surge tank, surges in canals.

UNIT-III
Turbines:
Types of turbines, specific speed and classification of turbines, synchronous speed, scroll casing, flumes and draft tubes, dimensions of scroll sassing and draft tubes, setting of turbines

UNIT-IV
Power House:
General layout and arrangements of hydro-power number and size of units, sub-structure, spacing of super-structure, underground power stations, tidal power.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:
1. Water Power Engineering, Dandekar, M.M. Sharma, K.N.
3. Water Power Engineering, Borrows, H.K.
UNIT-I

1. **Introduction:**
 Indian rivers, flood, flood problems, river morphology, behaviour of river flow, role of sediments in rivers, changes in regimes, river gauging, causes of flood and losses, alleviation of flooding.

2. **Hydrologic Statistics:**
 Probabilistic treatment of hydrologic data, frequency & probability functions, statistical parameters, fitting a probability distribution, probability distribution for hydraulic variables.

UNIT-II

3. **Flood Mitigation by River Protection:**
 Basis of river engineering, flow types, resistance flow, energy slope, backwater effect, three dimensional flow, circular and helicoidal flow, river improvement works, river survey, protection by embankment, discharge capacity, design of dyke, stability analysis of dykes, bank protection, bank recession, types of bank protection works, channel improvement, cutoffs diversion, bypass channel, cutoff channel, floored ways, flood plain zeroing, spreading grounds.

UNIT-III

4. **Flood Mitigation by Reservoirs:**
 Design factors, storage capacity determinations, sequent peak algorithm method, live storage, ripple mass curve flood routing, flood storage, dead storage, reservoir classification, reservoir sedimentation, distribution of sediments in reservoirs, measurement of sediment yields, sediment load measurement, Mood's method, life of reservoir, reservoir operation based on annual storage and regulation, single and multi purpose reservoirs, gate operation schedule, maximum and minimum flow operation, multi purpose reservoir operation, reservoir economics-cost benefit ratios, optimisation of benefits.

UNIT-IV

5. **Flood Forecasting & Warning:**
 Basic data, communication network, forecasting techniques and procedures, forecast of rainfall, runoff from rainfall, forecasting stages, peak travel time, forecast reporting flood warning, Engineering methods for flood fighting

6. **Engineering Economics of Flood Control:**
 Estimation of flood damages, estimation of benefits of flood control, cost benefit analysis of flood control project.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:

1. Flood Control & Drainage Engg. by S.N.Ghosh.
UNIT-I
Introduction; Networking and Web preliminaries; HTML, CGI, Java & JavaScript; Audio and Video; Database & SQL, IT in Construction Industry.

UNIT-II
Modeling of structures; Mesh generation, different algorithms and implementation; Visualization of structures, pre- and post-processing, displacement plotting, stress contouring, identification of hot spot in structures, by standard packages and with small programs.

UNIT-III
Introduction to professional Structural Analysis and Design packages; Database system for steel table, unit weight of materials, loading etc. as per IS codes. Analyzing and designing of simple structures with the available software.

UNIT-IV
Checking of results; Design methods of RCC and steel structures, difficulties faced in computer aided decision making.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:
(1) Internet and WWW – How to program by Deital, Pearson Edu., New Delhi
(2) Introduction to DBMS by Kahate, Pearson Edu., New Delhi
(3) Core Java (Vol-I) by Horstmann, Pearson Edu., New Delhi
(4) Advanced Structural Analysis by A K Jain, Nem Chand & Bros., Roorkee
(5) SAP and STRUDS Manuals
(6) Finite Element Analysis with Computer Programming by C.S. Krishnamurthy, TMH, New Delhi
UNIT-I

1 **Introduction:**
Importance of rock mechanics, composition of rocks, geological and lithological classification of rocks, classification of rocks for engineering purposes, R.Q.D. method of classification of rocks.
Theories of Brittle failure.

2 **Laboratory Testing of Rocks:**
Various methods of obtaining rock cores, methods of sample preparation, methods of removing end friction of the rock samples. Compression testing machine, uniaxial compression strength of rock samples, methods of finding tensile strength-direct and indirect methods, Brazilian test, shear box test, triaxial shear test, punch shear test.

UNIT-II

3 **In-situ Testing of Rocks:**
Field direct shear test on rock blocks, field triaxial strength, use of flat jacks, chamber test, plate load test, cable jacking test.

4 **Stress Evaluation in Field:**
Stress-relief technique (over coring), use of strain gauges, bore hole, deformation cell, photo-elastic stress meter, stress measurement with flat jack. Hydraulics Fracturing Techniques.

UNIT-III

5 **Stabilization of Rocks:**
Rock bolting, principle of rock bolting, various types of rock bolts, application of rock bolting. Field testing of rock bolts and cable anchors.

6 **Elastic and Dynamic Properties of Rocks:**
Stress-strain behaviour dynamic properties, resonance method and ultra-sonic pulse method.

UNIT-IV

7 **Pressure on Roof of Tunnels:**
Trap door experiment, Terzaghi's theory, Bieraumer, kommerel, Protodyakanov theory.

8 **Stress Around the Tunnels:**
Basic design and Principles of tunnels in rocks, design of pressure tunnels in rocks.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:
2 Fundamentals of Rock Mechanics by Jaeger and Cook
3 Rock Mechanics by Stagg & Zienkiewicz.
4 Rock Mechanics & Design of Structures in Rocks by Obert & Duvell
5 Rock Mechanics & Engineering by Jaeger
6 Art of Tunneling by Schzy.
B.TECH (CIVIL ENGINEERING)
Departmental Elective –II
Syllabus
B. Tech. VII Semester (Civil)
CE-421E ELEMENTS OF EARTHQUAKE ENGINEERING

L T P CREDIT
3 1 - 3.5

Theory : 70
Sessional : 30
Total : 100
Duration of Exam : 3 Hrs

UNIT-I

Seismology:
Introduction, plate tectonics, earthquake distribution and mechanism, seismicity, seismic waves, earthquake magnitude and intensity, seismic zoning and seismometry.

Single Degree of Freedom Systems:
Various types of dynamic loads, vibration of single degree of freedom system, Free and forced vibrations, types of damping, critical damping, Transmissibility, vibration measuring instruments, response spectrum.

UNIT-II

Multi-degrees of Freedom (MDOF) Systems:

UNIT-III

Seismic Analysis and Design:
General principles, assumptions, seismic coefficient method, response spectrum method, strength and deflection, design criterion for structures, significance of ductility, design and detailing for ductility, codal provisions, design examples.

UNIT-IV

Seismic Performance, Repair and Strengthening:
Methods for assessing seismic performance, influence of design ductility and masonry infills, criterion for repair and strengthening, repair and strengthening techniques and their applications, additions of new structural element

Vibrational Control:
General features of structural control, base isolation, active and passive control system. Earthquake resistance design as per I.S.: 1893, I.S. 4326 and I.S. 13920

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.
B. Tech. VII Semester (Civil)
CE-423 E CONCRETE TECHNOLOGY

L T P CREDIT Theory : 70
3 1 - 3.5 Sessional : 30
Total : 100
Duration of Exam : 3 Hrs

UNIT-I
1. Concrete as Structural Material:

2. Concrete Making Materials:

UNIT-II
3. Properties of Concrete:
 Introduction, workability, factors influencing workability, measurement of workability, requirements of workability, properties of hardened concrete, stress and strain characteristics of concrete, Young’s modulus of concrete, creep and shrinkage of concrete, permeability of concrete, durability of concrete sulphate attack, fire-resistance, thermal properties of concrete, construction joints, expansion and contraction joints.

4. Production of Concrete:

UNIT-III
5. Non-Destructive Testing of Concrete:
 Significance of Non-Destructive Testing, Rebound Hammer, Ultrasonic pulse velocity techniques, Penetration techniques, pullout tests, vibration methods, Radioactive techniques, Cover meter, core-tests.

6. Deterioration of Concrete & its Prevention:
 Causes of concrete deterioration, deterioration by water, surface weir, frost action, deterioration by chemical reactions, sulphate attack, alkali-aggregate reaction, corrosion of embedded steel in concrete, Prevention of deterioration of concrete

UNIT-IV
7. Repair Technology for Concrete Structures:
 Symptoms and diagnosis of distress, evaluation of cracks, repair of cracks, common types of repairs, distress in fire damaged structures, underwater repairs.

8. Special Concrete:
 Light weight concrete, definition and its properties, applications, high strength concrete, definitions, its properties and applications, Mass Concrete, waste material based concrete, shotcrete, fiber reinforced concrete: Materials Fibres types and properties, ferrrocement, polymer concrete composites, heavy weight concrete for radiation shielding.
9. **Prestressed Concrete:**
 Introduction, basic concepts, classifications and types of prestressing, prestressing systems, properties of materials, pre tensioned and post tensioned concrete elements,

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books Recommended:

2. Shetty, M.S. ‘Concrete Technology’, S. Chand & Co. N. Delhi
UNIT-I

1. Transport Planning Process
 Status of transportation in India. Objectives and scope of transport planning. Urban, regional and national transport planning. Transport planning process, various stages. Land use and traffic.

2. Transportation Survey
 Definition of study area. Zoning. Types of surveys. O-D surveys. Inventories of existing transport facilities, land use and economic activities.

UNIT-II

3. Trip Generation
 Trip purpose. Factors affecting trip generation. Trip generation estimation by multiple linear regression analysis, brief review of category analysis, advantages and limitations of these methods.

4. Trip Distribution
 Methods of trip distribution. Basic concepts of uniform factor method, average factor method and opportunity model. Trip distribution by gravity model.

UNIT-III

5. Traffic Assignment
 Principles of assignment. Assignment techniques. All or nothing assignment. Brief review of multipath assignment, capacity restraint assignment and diversion curves.

6. Modal Split
 General considerations for modal split. Factors affecting modal split. Brief introduction to various methods of modal split.

UNIT-IV

7. Evaluation
 Need for evaluation. Several plans to be formulated. Testing. Considerations in evaluation. Economic evaluation, basic principles, brief introduction to various methods of economic evaluation, comparison.

8. Mass Rapid Transit Systems
 Problems of Urban Transport. Introduction to MRTS. Requirements of MRTS. Types of MRTS. MRTS in India

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:

UNIT-I
1. **Introduction and Traffic Characteristics**
 Objectives and scope of Traffic Engg. Organizational set up of traffic engineering department in India. Importance of traffic characteristics. Road user characteristics. Vehicular characteristics. Max dimensions and weights of vehicles allowed in India. Effects of traffic characteristics on various design elements of the road.

2. **Traffic Surveys**
 Methods of conducting the study and presentation of the data for traffic volume study, speed study and origin and destination study. Speed and delay study. Parking surveys. On street parking, off street parking. Accident surveys. Causes of road accidents and preventive measures. Use of photographic techniques in traffic surveys.

UNIT-II
3. **Highway Capacity**

4. **Traffic Control**
 Types of traffic control devices. Traffic signs, general principles of traffic signing, types of traffic signs. Road markings, types, general principles of pavement markings. Design of rotary. Grade separated intersections. Miscellaneous traffic control aids and street furniture.

UNIT-III
5. **Signal Design**
 Types of signals. Linked or coordinated signal systems. Design of signal timings by trial cycle method, approximate method, Webstor’s method and IRC method.

6. **Traffic Regulation And Management**
 Need and scope of traffic regulations. Regulation of speed, vehicles and drivers. General traffic regulations. Motor vehicle act. Scope of traffic management. Traffic management measures: restrictions on turning movements, one way streets, tidal flow operations, exclusive bus lanes, traffic restraint, road pricing.

UNIT-IV
7. **Traffic And Environment**

8. **Computer Application, Traffic Simulation**

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:
B.TECH (CIVIL ENGINEERING)
Departmental Elective –III
Syllabus
UNIT-I

1. **Introduction:**
 Field conditions, boundary conditions, functional approximation, finite differences method, development of finite element method.

2. **Element Properties:**
 Displacement models, relation between the nodal degrees of freedom and generalized coordinates, convergence requirements, natural co-ordinate systems, shape functions, element strains and stresses, development of element stiffness, matrix and equivalent nodal loads, static condensation.

UNIT-II

3. **Isoparametric Elements:**
 Isoparametric, super-parametric and sub-parametric elements, computation of stiffness matrix of isoparametric elements, convergence criteria for isoparametric elements, numerical integration technique using Gauss Quadrature.

4. **One Dimensional Element:**

UNIT-III

5. **Plane Stress and Plane Strain Analysis:**
 Triangular elements, rectangular elements, isoparametric elements, patch test, axisymmetric solid element.

6. **Plane Bending Analysis:**
 Displacement functions, plate bending elements, reduced integration, stress smoothing technique.

UNIT-IV

7. **Conduction Heat Transfer:**
 Formulation of finite element method for heat conduction, various weighted residual techniques, one dimensional heat conduction, two dimensional conduction heat transfer.

8. **Direct Stiffness Method of Analysis and Solution Technique:**
 Assemblage of elements, direct stiffness method, boundary conditions and reactions, Gauss elimination and matrix decomposition.

9. **Finite Element Analysis Software:**
 Pre-and Post-processors finite element analysis software, error estimates and adaptive meshing.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:

B. Tech. VIII Semester (Departmental Elective-III)
CE-412E STRUCTURAL OPTIMIZATION

L T P CREDIT
3 1 - 3.5

<table>
<thead>
<tr>
<th>Theory</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessional</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

UNIT-I
Introduction and scope; Simultaneous failure mode and design; Classical extremal problems and calculus of variation.

UNIT-II
Variational principles with constraints, linear programming, integer programming, nonlinear programming, dynamic programming, geometric and stochastic programming.

UNIT-III
Applications to structural steel and concrete members, trusses and frames.

UNIT-IV
Design under frequency constraints, design of layouts.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:
(1) Engineering Optimization by Singiresu S. Rao, New Age International Pub., New Delhi
(2) Operational Research in Indian Steel Industry by J. Shah and A. Tripathy, New Age International Pub., New Delhi
B. Tech. VIII Semester (Civil)
(DEPARTMENT ELECTIVE-III)
CE-414E GYOSYNTHETICS ENGINEERING

L T P CREDIT
3 1 - 3.5

Theory : 70
Sessional : 30
Total : 100
Duration of Exam : 3 Hrs

UNIT I

Basic Description of Geosynthetics:
Historical Development, The Nomenclature, Function, Use around the World, Applications, Development in India.

Raw Materials – Their Durability and Ageing:
Raw Materials, Durability, Degrading Agencies, Polymers, Biological Resistance, Chemical Resistance, Weathering Resistance

UNIT II

Manufacturing Methods:
Fibres, Yarn, Nonwoven Geotextiles, Woven Geotextiles, D.S.F. Fabrics.

Geogrids- Testing and Evaluation:
Factors influencing Testing, Sampling, Physical Properties, and Mechanical Properties under Uniaxial loading, Creep Testing

UNIT III

Erosion Control with Geogrids:
Wind Erosion, Rain Water Erosion, Erosion Control Measures, Placement of Geogrid

Bearing Capacity Improvement with Geogrids:
Advantages, Mechanism, Modes of Failure, Friction Coefficient, Experimental Studies.

UNIT IV

Application of Geosynthetics in Water Resource Projects: Case Study: Dharoidam, Hiran II Dam, Meda Creek Irrigation Scheme, Lining of Kakarpar Canal

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:

1. Designing with Geosynthetics, (Prentice Hall) by Robert M. Koerner.
UNIT-I

1. **Theory of Vibrations:**
 Definitions, harmonic motion, vibrations of a single degree freedom system, transmissibility, theory of vibration measuring instruments.

2. **General Principles of Machine Foundation Design:**
 Types of machines and machine foundations, criteria for satisfactory action of a machine foundation, permissible amplitude, allowable soil pressure, permissible stresses in concrete and steel, permissible stresses in timber.

UNIT-II

3. **Evaluation of Parameters:**
 Modes of vibration of a rigid block foundation, Barken's soil spring constants, determination of coefficients of elastic uniform compression and Elastic uniform shear.

4. **Foundations for Reciprocating Machines:**
 Analysis of block foundation by Barken's theory of linear elastic weightless spring analogy, Indian Standard for design and construction of foundation for reciprocating machine, design procedure, design examples.

UNIT-III

5. **Foundation for Impact Machines:**
 Dynamic analysis, Barken's recommendations for weight and base contact area, IS Code practice for design and construction of foundations for impact machines, design procedure, design examples.

6. **Foundations for Rotary Machines:**
 Special considerations, design criteria, methods of analysis and design.

UNIT-IV

7. **Vibration Isolation and Screening:**
 Active isolation, passive isolation, methods of isolation, wave screening, vibration absorbing materials, planning for vibration isolation.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:

1. Dynamics of Bases and Foundations by D.D.Barken
2. Soil Dynamics by Shamsher Prakash
3. Soil Dynamics and Machine Foundations by Swami Saran
4. Principles of Soil Dynamics by B.M.Das
5. Vibration and Shock Isolation by Crede
B.TECH (CIVIL ENGINEERING)
Departmental Elective –IV
Syllabus
B. Tech. VIII Semester (Civil)
(Deartmental Elective-IV)
CE-418E GROUND WATER ENGINEERING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
<th>Duration of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hrs</td>
</tr>
</tbody>
</table>

UNIT-I

UNIT-II
Effect of boundaries, interference of water, leaky aquifers, Thiem's equilibrium formula for unconfined and confined aquifers and determination of hydraulic properties of aquifers. Partial penetration of an aquifer by a well, spherical flow in a well. Non equilibrium formula for aquifer (unsteady radial flows).

UNIT-III
Tubewells, optimum capacity, silting of tubewell, design of tubewells in different aquifers, tubewell types, parts, bore hole, strains, its types, well pipe, casing pipe, blind pipe. Construction and working of tubewells, site selection, drilling operation, cable tool method, hydraulic method, rivers Rotary Method and drilling fluids, well screen assembly installation, verticality and alignment of tubewells, gravel packing, development of tubewells, sickness, inconstruction and corrosion and failure of tubewells, Pumping equipment and hydraulic testing of pumps.

UNIT-IV
Artificial recharge of ground water, considerations and methods, recharge techniques induced infiltration, water spreading, flooding, basins, ditching, modification of natural channels, irrigation, recharge pits, shafts and recharge wells.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:

2. Groundwater, H.M.Raghunath, Wiley Eastern Ltd., N. Delhi
B. Tech. VIII Semester (Civil)
(Departmental Elective-IV)
CE- 420E DESIGN OF HYDRAULIC STRUCTURES

L T P CREDIT
3 1 - 3.5
Theory : 70
Sessional : 30
Total : 100
Duration of Exam : 3 Hrs

Unit-I

1. **Gravity Dams**
Dam parameters, Criteria for selection of dam sites, Joints & keys, Cooling arrangement, Water stops at joints, Closing gaps, forces acting on dams, Types of loads, Elementary profile of a gravity dam, Step by step method, Stability analysis methods, Safety criteria, Gravity analysis, Internal stress calculations, Graphical determination of shear stress, Effect of foundation elasticity on stresses, Galleries, Behaviour of concrete gravity dam subjected to earthquakes, Thermal stresses.

Unit-II

2. **Arch Dams**
Development of arch dam, Valleys suited for arch dams, Arch dams layout, Types of arch dams, Appurtenant works, Thin cylinder theory and most economical central angle, Design of arch dam, Suitability at abutments, Effects of foundation elasticity on the behaviours of arch dam.

3. **Buttress Dams**
Types of buttress dam, Selection of type of buttress dam, Most economical profile having no tension, Design principles, Butterss design by Unit column theory, Basic shape of buttress, Design of multiple arch dam, Provision of spillways and outlet works.

Unit-III

4. **Spillways and Energy Dissipaters**
Factors affecting design, Components of spillways, Types of spillways, Design principles. Hydraulic design oggee spillway, Side channel spillway, Chute spillway, Syphon spillway, Shaft-spillway, Energy dissipation below spillways, Bucket type energy dissipaters, Design of various types of stilling basins.

Unit-IV

5. **Weirs and Barrages**
Design of weirs & barrages on permeable foundation, Khosla theory of independent variable, Upstream and downstream protection, Flownets, design of sloping Glacis weir, calculation for hydraulic jump and uplift pressure.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books Recommended:
B. Tech. VIII Semester (Civil)
(DEPARTMENT ELECTIVE-IV)
CE-422E ENVIRONMENTAL IMPACT ASSESSMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CREDIT</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>3.5</td>
<td></td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

Duration of Exam : 3 Hrs

UNIT I

Environment and Human Activity:
Resources, pollution, reuse and environmental management

Management of Aquatic Environment:
Water quality controls, Drainage basin activities and water pollution. The impact of human activity on aquatic resources. The control measures, regional planning

UNIT II

Air Quality Management:
Atmosphere effect of human activity on air quality, waste disposal alternative, Optimization, planning of waste disposal.

UNIT III

Waste Management:
Water disposal methods, Impact of waste disposal of human activity.

Land Use Management:
Impact of land use on human life. Control of hazards in land use, management of land use.

UNIT IV

Environmental Assessment:

Case studies of EIA of river valley projects and thermal power projects.

Note for Paper-setter: EIGHT questions are to set selecting at least TWO questions from each unit, covering entire syllabus. Students will be required to attempt FIVE questions selecting at least ONE question from each unit.

Books:

2. Environmental Impact Assessment by Canter.
CE-424E REMOTE SENSING AND GIS

B. Tech. VIII Semester (Civil)
(Departmental Elective-IV)

UNIT-I
Basic concepts of remote sensing; Airborne and space borne sensors; Data acquisition; Digital image Processing; Restoration; Enhancement; Segmentation feature extraction; Clustering edge detection;

UNIT-II
Geographic Information System; Introduction to Microwave remote sensing and Global Positioning System;

UNIT-III
Applications to Water resources; Land use and erosion; Forestry; Environment and ecology;

UNIT-IV
Use of relevant software for Remote sensing and GIS applications.

Note for Paper-setter: EIGHT questions are to be set selecting at least TWO questions from each unit, covering the entire syllabus. Students will be required to attempt FIVE questions, selecting ONE question from each unit.

Books:
(1) GPS and Surveying using GPS by Gopi S, Tata McGraw Hill
(2) Introduction to GIS by Chang, Tata Mc Graw Hill