Bachelor of Technology
(Common for All Branches)

B.Tech. 1st Year Syllabus

GJUS&T, HISAR
B.TECH. (1st Year)
SCHEME OF STUDIES & EXAMINATIONS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I</td>
<td>24</td>
</tr>
<tr>
<td>2.</td>
<td>II</td>
<td>28</td>
</tr>
<tr>
<td>3.</td>
<td>III</td>
<td>24.5</td>
</tr>
<tr>
<td>4.</td>
<td>IV</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>V</td>
<td>26</td>
</tr>
<tr>
<td>6.</td>
<td>VI</td>
<td>24</td>
</tr>
<tr>
<td>7.</td>
<td>VII</td>
<td>25.5</td>
</tr>
<tr>
<td>8.</td>
<td>VIII</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td>200</td>
</tr>
</tbody>
</table>

Note:
1. Students are allowed to use single memory, programmable scientific calculator during examination for all subjects in BTech.
2. More than one Elective will only be offered subject to availability of faculty.
3. Teacher will conduct practical in group of 20-22 students.
SYLLABUS
The course aims at inculcating a minimum level of language proficiency among students of Engineering and Technology. The purpose is to sensitise them to the nuances of English and its applications for various communication needs.

COURSE CONTENT:

Unit-I
Semantics: Synonyms, Antonyms, Homophones, Homonyms, Form and function of words

Unit-II
Syntax: Sentence structures, Verb patterns and their usage

Unit-III
Phonetics: Basic Concepts – Vowels, Consonants, Phonemes, Syllables; Articulation of Speech Sounds – Place and Manner of Articulation; Transcription of words and simple sentences, using International Phonetic Alphabet.

Unit-IV
Comprehension: Listening and Reading comprehension – Note taking, Reviewing, Summarising, Interpreting, Paraphrasing and Précis Writing.

Unit-V
Composition: Descriptive, Explanatory, Analytical and Argumentative Writing - description of simple objects like instruments, appliances, places, persons, principles; description and explanation of processes and operations; analysis and arguments in the form of debate and group discussion

Unit-VI
Text: *English for Students of Science* by A.Roy and P.L. Sharma (Orient Longman)

Chapters for Study:
i) "The year 2050" by Theodore J. Gordon.
ii) "The Mushroom of Death" by A. Bandhopadhyay.
iii) "The Discovery" by Herman Ould.

The prescribed text will be used as a case study for various components of the syllabus.
Book Review – Herein the students will be required to read and submit a review of a book (Literary or non-literary) of their own choice. This will be followed by a presentation of the same in the class.

TEXT BOOKS:

2. *Spoken English for India* by R.K. Bansal and J.B. Harrison, Orient Longman.

SUGGESTED READING:

1. *English Grammar, Composition and Correspondence* by M.A. Pink and S.E. Thomas, S. Chand and Sons Pvt. Ltd., Delhi.
8. *Reading Between the Lines* by McRae, Foundation Books (Cambridge university Press), Delhi.

SCHEME OF EXAMINATION:

There will be seven questions in all covering all the units, except Unit VII which (besides other modes of internal evaluation) is for internal assessment only.

All questions will be compulsory and will have sufficient internal choice.

Unit-I: 15 Marks

The question will be set so as to evaluate the following: Usage of the words given, Changing the grammatical quality and function of the words, One word Substitutes, synonyms, antonyms, homophones, homonyms.

Unit-II: 20 Marks

There will be one question having different parts. The question should test students’ knowledge of sentence structures and verb patterns. The question can be in the nature of ‘Do as directed’, ‘Tracing and rectifying structural Errors’, ‘Elucidating patterns through sentences and vice-versa’, ‘Changing the word-order’, ‘Synthesizing the sentences’ and ‘Completing the sentences’, etc.

Unit-III: 15 Marks

There will be two questions from this Unit. Question one will be in the nature of short notes testing the basic concepts and articulation of speech sounds. The second question would require transcription of individual words and simple sentences.

Unit-IV: 15 Marks

Comprehension and Interpretation of a passage given (Literary or non-literary, newspaper article, story, extract from a speech etc.), will be judged for its vocabulary, general understanding and interpretation of the content in the form of question answer exercise, culling out important points, summarising and précis writing etc.
Unit-V: 15 Marks

The question will require the definition, description, analysis, explanation of various objects and processes. Besides, a topic of contemporary relevance may be given for writing a paragraph in any one of the writing forms prescribed in the unit.

Unit-VI: 20 Marks

There will be two questions from the text prescribed. The first question will evaluate the comprehension of the text through short answer questions or a long answer question. The second question will judge the linguistic aspect of the text such as using a particular word in its various syntactic forms like noun, adjective, verb etc.; matching the lists of words and their explanation; providing opposite/similar meanings, adding suffixes and prefixes etc.
MATH-101-E

Mathematics-I (BTech. 1st Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

Part-A

Applications of Differentiation: Taylor's and Maclaurin's series, Asymptotes, Curvature Asymptotes.

Partial Differentiation & its Applications: Functions of two or more variables; partial derivatives, Total differential and differentiability, Derivatives of composite and implicit functions, Jacobians, Higher order partial derivatives.

Homogeneous functions, Euler's theorem, Taylor's series for functions of two variables (without proof), maxima-minima of function of two variables, Lagrange's method of undetermined multipliers, Differentiation under integral sign.

Part-B

Applications of Single & Multiple Integration: Applications of single integration to find volume of solids and surface area of solids of revolution. Double integral, change of order of integration, Double integral in polar coordinates, Applications of double integral to find area enclosed by plane curves and volume of solids of revolution.

Triple integral, volume of solids, change of variables, Beta and gamma functions and relationship between them.

Vector Calculus: Differentiation of vectors, scalar and vector point functions Gradient of a scalar field and directional derivative, divergence and curl of a vector field and their physical interpretations.

Integration of vectors, line integral, surface integral, volume integral, Green, Stoke's and Gauss theorems (without proof) and their simple applications.

TEXT BOOKS :

REFERENCE BOOKS :

Note: Examiner will set eight questions, taking four from Part-A and four from Part-B. Students will be required to attempt five questions taking at least two from each part.
SYLLABUS

PART-A

PHYSICAL OPTICS

Interference : Division of wave front-Fresnel's biprism, Division of amplitude – Newton's rings, Michelson interferometer, applications.

Diffraction : Difference between Fraunhofer and Fresnel diffraction. Fraunhofer diffraction through a slit. Plane transmission diffraction grating, its dispersive and resolving powers.

Polarization : Polarised and unpolarized light, double refraction; Nicol prism, quarter and half wave plates, Polarimetry; Biquartz and Laurent's half-shade polarimeters, Simple concepts of photoelasticity.

LASER

Spontaneous and stimulated emissions, Laser action, characteristics of laser beam-concepts of coherence, He-Ne and semiconductor lasers (simple ideas), applications.

FIBRE OPTICS

Propagation of light in fibres, numerical aperture, single mode and multi mode fibres, applications.

PART-B

WAVE AND OSCILLATIONS

Simple concepts of Harmonic Oscillator, resonance, quality factor. E.M. wave theory-review of basic ideas, Maxwell’s equations, simple plane wave equations, simple concepts of wave guides and co-axial cables, Poynting vector.

DIELECTRICS

Molecular theory, polarization, displacement, susceptibility, dielectric coefficient, permittivity & various relations between these, Gauss's law in the presence of a dielectric, Energy stored in an electric field.

Behaviour of dielectrics in a.c. field-simple concepts, dielectric losses.

SPECIAL THEORY OF RELATIVITY

Michelson-Moreley experiment, Lorentz transformations, variation of mass with velocity, mass energy equivalence.

NUCLEAR PHYSICS

Neutron Cross-section, Nuclear fission, Moderators, Nuclear reactors, Reactor criticality, Nuclear fusion. Interaction of radiation with matter-basic concepts, radiation detectors-ionisation chamber, G.M. Counter, Scintillation and solid state detectors, cloud chamber and bubble chamber.

TEXT BOOKS :

1. Physics of the Atom - Wehr, Richards & Adair (Narosa)
2. Perspectives of Modern Physics - Arthur Beiser (TMH)
3. Modern Engineering Physics – A.S. Vasudeva (S. Chand)

REFERENCE BOOKS :

1. Electricity and Magnetism – F.W. Sears (Narosa)
3. A Text Book of Optics – Brij Lal & Subramanyam

Note: The Examiners will set eight questions, taking four from each part. The students will be required to attempt five questions in all selecting at least two from each part. All questions will carry equal marks.
SYLLABUS

Unit I Introduction: Introduction to Manufacturing Processes and their Classification. Industrial Safety; Introduction, Types of Accidents, Causes and Common Sources of Accidents, Methods of Safety, First Aid.

Unit III Foundry: Introduction to Casting Processes, Basic Steps in Casting Process, Pattern, Types of Patterns, Pattern Allowances, Risers, Runners, Gates, Moulding Sand and its composition, Sand Preparation, Molding Methods, Core Sands and Core Making, Core Assembly, Mold Assembly, Melting (Cupola) and Pouring, Fettling, Casting Defects and Remedies.

Unit VII Plant Layout, Objectives of Layout, Types of Plant Layout and their Advantages.

Text Books:

Reference Books:

Note: Eight questions will be set by the examiner, taking at least one question from each unit. Students will be required to attempt five questions.
SYLLABUS

Unit-1 :
Thermodynamics - Second law, concept of Entropy, Entropy change for an ideal gas, free energy and work functions, Free energy change, Chemical Potential, Gibb's Helmholtz equation, Clausius - Clapeyron equation, Related numerical problems with above topics.

Unit-2 :
Phase-Rule - Terminology, Derivation of Gibb's Phase Rule Equation, One Component System (H₂O System), Two Components systems, Eutectic system (Pb-Ag), system with congruent m.pt. (Zn-Mg), systems with incongruent m.pt. (Na-K), Applications of above Systems.

Unit-3 :

Unit-4 :
Water and its treatment : Part II – Treatment of water for domestic use, coagulation, sedimentation, filtration and dis-infection, water softening, Ion-exchange process, mixed bed demineralisation, Desalination (reverse osmosis) (electrodialysis).

Unit-5 :
Corrosion and its prevention - Galvanic & concentration cell, Dry and wet corrosion, Electrochemical theory of corrosion, Galvanic corrosion, pitting corrosion, water-line corrosion, differential aeration corrosion, stress corrosion, factors affecting corrosion, Preventive measures (proper design, Cathodic protection, protective coatings).

Unit-6 :
Lubrication and Lubricants - Friction, mechanism of lubrication, classification and properties of lubricants, Additives for lubricants, synthetic lubricants, Greases – Preparation & properties (consistency, drop point) and uses.

Unit-7 :
Polymers and Polymerization - Organic polymers, polymerisation, various types of polymerisation, effect of structure on properties of polymers, preparation properties and technical applications of thermo-plastics (PVC, PVA), thermosets (PF, UF), and elastomers (SBR, GR-N), Silicones, Introduction to polymeric compsites.

Unit-8 :
Analytical Methods - Thermal methods, Principle, method and application of Thermogravimetric analysis, Differential thermal analysis and Differential scanning calorimetry, (Experimental details are excluded), Spectroscopic methods, Spectrophotometry, interaction of E.M. radiations with a molecule and origin of spectrum, spectroscopic, techniques-vibrational and electronic spectroscopy (Experimental details are excluded), conductometric titration, elementary discussion on Flame-photometry.

NOTE : Eight questions are to be set with a fair weightage of all the units. The candidates will be required to attempt five questions in all.

TEXT BOOKS :
1. Engineering Chemistry, P.C. Jain, Monica Jain (Dhanpat Rai & Co.).

REFERENCE BOOKS :
1. Instrumental methods of Chemical Analysis, MERITT & WILJARD (East-West Press),
CSE -101 E Fundamentals of Computers & Programming in C
(BTech. 1st Sem & 2nd Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

Radix number system: Decimal, Binary, Octal, Hexadecimal numbers and their inter-conversions; Representation of information inside the computers.

Unit-3: Internet basics: Introduction to the basic concepts of Networks and Data Communications, How Internet works, Major features of internet, Emails, FTP, Using the internet.

Unit-5: C Programming Language: C fundamentals, formatted input/ output, expressions, selection statements, loops and their applications; Basic types, arrays, functions, including recursive functions, program organization: local and external variables and scope; pointers & arrays.

Unit-6: Strings: strings literals, string variables, I/O of strings, arrays of strings; applications. Preprocessor: preprocessor directives, macro definition, conditional compilation; Structures, Unions and Enumerations: Structure variables and operations on structures; Structured types, nested array structures; unions; enumeration as integers, tags and types. Declaration: Declaration syntax, storage classes, types qualifiers, declarators, initializers. Program Design: modules, information hiding, abstract data types, difference between C & C++, Low level programming: Bitwise operators, Bit fields in structures, other low level techniques.

Unit-7: Standard library: Input / output; streams, file operations, formatted I/O, character I/O, line I/O, block, string I/O, Library support for numbers and character data, error handling.

Text Books:
- Using Information Technology, 5th Edi, Brian K Williams & Stacey C. Sawyer, 2003, TMH
- The C Programming Language by Dennis M Ritchie, Brian W. Kernigham, 1988, PHI.

Reference Books:
- Information technology, Dennis P. Curtin, Kim Foley, Kunal Sen, Cathleen Morin, 1998, TMH
- Theory and problem of programming with C, Byron C Gottfried, TMH
- Teach yourself all about computers by Barry Press and Marcia Press, 2000, IDG Books India.

Note: 8 questions will be set by the examiner (at least 2 questions from unit-1 to 4, 2 each from unit –5& 6, and one from unit-7). The students will be required to attempt 5 questions in all.
SYLLABUS

UNIT1. D.C. CIRCUITS :
Ohm’s Law, Kirchoff’s Laws, D.C. Circuits, Nodal and Loop methods of analysis.

UNIT2. A.C. CIRCUITS :
Sinusoidal signal, instantaneous and peak values, RMS and average values, phase angle, polar & rectangular, exponential and trigonometric representations; R, L and C components, behaviors of these components in A.C. circuits. Concept of complex power, power factor.

TRANSIENT RESPONSE :
Transient response of RL, RC and RLC Circuits with step input.

UNIT3. NETWORK THEOREMS :
Thevenin’s theorem, Norton’s theorem, superposition theorem, maximum power transfer theorem, Reciprocity theorem, Tellegen’s theorem, Milman’s theorem. Star to Delta & Delta to Star transformation.

UNIT4. SERIES AND PARALLEL A.C. CIRCUITS :
Series and parallel A.C. circuits, series and parallel resonance, Q factor, cut-off frequencies and bandwidth.

UNIT5. THREE PHASE CIRCUITS :
Phase and line voltages and currents, balanced star and delta circuits, power equation, measurement of power by two wattmeter method, Importance of earthing.

UNIT6. TRANSFORMERS :
Principle, construction & working of transformer, Efficiency and regulation.

UNIT7. ELECTRICAL MACHINES :
Introduction to D.C. Machines, Induction motor, Synchronous machines.

UNIT8. MEASURING INSTRUMENTS :
Voltmeter, Ammeter, Watt meter, Energy meter.

TEXT BOOKS:
1. Basic Electrical Engg (2nd Edition) : Kothari & Nagarath, TMH
2. Electrical Technology (Vol-I) : B.L Theraja & A K Theraja, S.Chand

REFERENCE BOOKS:
1. Electrical Engineering Fundamentals : Deltoro, PHI
2. Network Analysis : Valkenburg, PHI

NOTE : Eight questions are to be set in all by the examiner taking at least one question from each unit. Students will be required to attempt five questions in all.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

Unit I Properties of Steam & Boilers:

Formation of steam at constant pressure, Thermodynamics properties of steam, Condition of steam, Steam tables, Measurement of dryness fraction by throttling calorimeter, Classification of boilers, Comparison of water and fire tube boilers mounting and accessories with their functions, Constructional and operational details of Cochran and Babcock and Wilcox boilers, Problems.

Unit II Steam Turbines and Condensers:

Classification of turbines, Working principle of impulse and reaction turbine, Compounding of impulse turbine, Comparison of impulse and reaction turbines, Types of condensers, Cooling ponds and cooling towers, Condenser and vacuum efficiencies.

Unit III I.C. Engines and Gas Turbines:

Introduction, Classification, Constructional details and working of two-stroke and four-stroke diesel and petrol engines, Otto, Diesel and Dual cycles, Working principle of gas turbine, Constant pressure gas turbine cycle.

Unit IV Water Turbines, Pumps and Hydraulic Devices:

Introduction, Classification, Construction details and working of Pelton, Francis and Kaplan turbines, Specific speed and selection of turbines, Classification of water pumps and their working, Hydraulic jack and lift.

Unit V Simple Lifting Machines:

Unit VI Power Transmission Methods and Devices:

Introduction to Power transmission, Belt drive, Rope drive, Chain drive, Pulley, Gear drive, Types of gears, Gear train, Clutches, Types and function of clutches, Types and function of brakes, Power measurement by dynamometer, Types of dynamometers.

Unit VII Stresses and Strains:

Introduction, Concept & types of Stresses and strains, Poison’s ratio, stresses and strains in simple and compound bars under axial loading, Stress-strain diagrams, Hooks law, Elastic constants & their relationships, Principle stresses & strains and principal- planes, Mohr’s circle of stresses. Numerical problems.

Unit VIII Bending Moment & Shear Force:

Definitions, SF and BM diagrams for cantilever and simply supported beam. Calculation of maximum SF, BM and point of contra-flexure under the loads of (i) concentrated load (ii) uniformly distributed load (iii) combination of concentrated and uniformly distributed loads. Problems.

Text Books:

Reference Books:

NOTE: In the semester examination, the examiner will set eight questions, at least one question from each unit. The students will be required to attend only 5 questions.

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

Unit I Various types of projections, First and Third angle systems of orthographic projections. Projection of Points in different quadrants.

Unit II Projections of Straight Lines – parallel to one or both reference planes, contained by one or both planes, perpendicular to one of the planes, inclined to one plane but parallel to the other planes, inclined to both the planes, true length of a line and its inclination with reference planes, traces of a line.

Unit III Projections of Planes – parallel to one reference plane, inclined to one plane but perpendicular to the other, inclined to both reference planes.

Unit IV Projections of Polyhedra Solids and Solids of Revolution - in simple positions with axis perpendicular to a plane, with axis parallel to both planes, with axis parallel to one plane and inclined to the other, Projections of sections of Prisms, Pyramids, Cylinders and Cones. True shape of section. Development of surfaces of various solids.

Unit V Isometric projections - introduction, isometric scale, Isometric views of plane figures, prisms, pyramids and cylinders.

Unit VI Orthographic drawings of Bolts and Nuts, Bolted Joints, Screw threads, Screwed Joints.

Unit VII Free Hand Sketching - Orthographic Views from Isometric, Views of Simple Machine Components such as Brackets, Bearing Blocks, Guiding Blocks and Simple Couplings.

Note: Some simple exercises may be attempted with AUTOCAD.

Text Book

Reference Books
SYLLABUS

The experiments in Ist semester will be based mainly upon optics, electrostatics, wave and oscillations which are the parts of the theory syllabus of Ist semester.
1. To find the wavelength of sodium light by Newton's rings experiment.
2. To find the wavelength of sodium light by Fresnel's biprism experiment.
3. To find the wavelength of various colours of white light with the help of a plane transmission diffraction grating.
4. To find the refractive index and cauchy's constants of a prism by using spectrometer.
5. To find the wavelength of sodium light by Michelson interferometer.
6. To find the resolving power of a telescope.
7. To find the pitch of a screw using He-Ne laser.
8. To find the specific rotation of sugar solution by using a polarimeter.
9. To compare the capacitances of two capacitors by De'sauty bridge and hence to find the dielectric constant of a medium.
10. To find the flashing and quenching potentials of Argon and also to find the capacitance of unknown capacitor.
11. To study the photoconducting cell and hence to verify the inverse square law.
12. To find the temperature co-efficient of resistance by using platinum resistance thermometer and Callender and Griffith bridge.
13. To find the frequency of A.C. mains by using sonometer.
14. To find the velocity of ultrasonic waves in non-conducting medium by piezo-electric method.

RECOMMENDED BOOKS:
1. Advanced Practical Physics – B.L. Worshnop and H.T. Flint (KPH)

Note: Students will be required to perform atleast 10 experiments out of the list in a semester.
ME- 107 E Workshop Practice(BTech. 1st Sem & 2nd Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

List of Experiments / Jobs

1. To study different types of measuring tools used in metrology and determine least counts of vernier calipers, micrometers and vernier height gauges.

2. To study different types of machine tools (lathe, shape or planer or slotter, milling, drilling machines)

3. To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off.

4. To study different types of fitting tools and marking tools used in fitting practice.

5. To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.

6. To prepare joints for welding suitable for butt welding and lap welding.

7. To perform pipe welding.

8. To study various types of carpentry tools and prepare simple types of at least two wooden joints.

9. To prepare simple engineering components/ shapes by forging.

10. To prepare mold and core assembly, to put metal in the mold and fettle the casting.

11. To prepare horizontal surface/ vertical surface/ curved surface/ slots or V-grooves on a shaper/ planner.

12. To prepare a job involving side and face milling on a milling machine.

NOTE : 1. At least ten experiments/ jobs are to be performed/ prepared by students in the semester.

2. At least 8 experiments/ jobs should be performed / prepared from the above list, remaining two may either be performed/ prepared from the above list or designed & set by the concerned institution as per the scope of the syllabus of Manufacturing Processes and facilities available in the Institute.
CYP-103 Chemistry Lab. (BTech. 1st Sem & 2nd Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

LIST OF EXPERIMENTS
1. Determination of Ca**++** and Mg**++** hardness of water using EDTA solution.
2. Determination of alkalinity of water sample.
3. Determination of dissolved oxygen (DO) in the given water sample.
4. To find the melting & eutectic point for a two component system by using method of cooling curve.
5. Determination of viscosity of lubricant by Red Wood viscometer (No. 1 & No. 2).
6. To determine flash point & fire point of an oil by Pensky-Marten's flash point apparatus.
7. To prepare Phenol-formaldehyde and Urea formaldehyde resin.
8. To find out saponification No. of an oil.
10. Determination of concentration of KMnO₄ solution spectrophotometrically.
11. Determination of strength of HCl solution by titrating it against NaOH solution conductometrically.
12. To determine amount of sodium and potassium in a given water sample by flame photometer.
13. Estimation of total iron in an iron alloy.

Note: At least ten experiments are to be performed by the students.

SUGGESTED BOOKS:
1. A Text Book on Experimental and Calculation - Engineering Chemistry, S.S. Dara, S. Chand & Company (Ltd.)
SYLLABUS

LIST OF EXPERIMENTS

1. To verify KCL and KVL.
2. To verify Thevenin’s & Norton’s Theorems.
3. To Verify maximum power transfer theorem in D.C. Circuit & A.C circuit.
4. To verify reciprocity & Superposition theorems.
5. To study frequency response of a series R-L-C circuit and determine resonant frequency & Q-factor for various values of R,L,C.
6. To study frequency response of a parallel R-L-C circuit and determine resonant frequency & Q-factor for various values of R,L,C.
7. To perform direct load test of a transformer and plot efficiency Vs load characteristic.
8. To perform direct load test of a D.C. shunt generator and plot load voltage Vs load current curve.
9. To plot V-curve of a synchronous motor.
11. To study various type of meters.
13. Measurement of power in a 3 phase system by two watt meter method.

NOTE: 1. At least 10 experiments are to be performed by students in the semester.
2. At least 7 experiments should be performed from the above list, remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus of EE-101-E.
Representative programming problems:-

1. Write a program to find the largest of three numbers. (if-then-else)
2. Write a program to find the largest number out of ten numbers (for-statement)
3. Write a program to find the average male height & average female heights in the class (input is in form of sex code, height).
4. Write a program to find roots of quadratic equation using functions and switch statements.
5. Write a program using arrays to find the largest and second largest no.
 out of given 50 nos.
6. Write a program to multiply two matrices
7. Write a program to read a string and write it in reverse order
8. Write a program to concatenate two strings
9. Write a program to sort numbers using the Quicksort Algorithm.
11. Write a program to check that the input string is a palindrome or not.

Note: At least 5 to 10 more exercises to be given by the teacher concerned.
ME- 109 E Elements of Mechanical Engineering Lab. (B Tech. 1st Sem & 2nd Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

LIST OF EXPERIMENTS

1. To study Cochran & Babcock & Wilcox boilers.
2. To study the working & function of mountings & accessories in boilers.
3. To study 2-Stroke & 4-Stroke diesel engines.
4. To study 2-Stroke & 4-Stroke petrol engines.
5. To calculate the V.R., M.A. & efficiency of single, double & triple start worm & worm wheel.
6. To calculate the V.R., M.A. & efficiency of single & double purchase winch crabs.
7. To find the percentage error between observed and calculated values of stresses in the members of a Jib crane.
8. To draw the SF & BM diagrams of a simply supported beam with concentrated loads.
9. To study the simple & compound screw jacks and find their MA, VR & efficiency.
10. To study the various types of dynamometers.
11. To the constructional features & working of Pelton/Kaplan/Francis.
12. To prepare stress-strain diagram for mild steel & cast iron specimens under tension and compression respectively on a Universal testing machine.
13. To determine the Rockwell / Brinell /Vickers hardness no. of a given specimen on the respective machines.

Note:
1. Total ten experiments are to be performed in the Semester.
2. At least seven experiments should be performed from the above list.
 Remaining three experiments should be performed as designed & set by the concerned Institution as per the scope of the syllabus.
HUM-102-E Communication Skills In English (BTech. 2nd Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

This course is designed for the students of Engineering and Technology who need English for specific purposes in specific situations. It aims at imparting the communication skills that are needed in their academic and professional pursuits. This is achieved through an amalgamation of traditional lecture-oriented approach of teaching with the task based skill oriented methodology of learning.

COURSE CONTENT:

Unit-I
Communicative Grammar: Spotting the errors pertaining to nouns, pronouns, adjective and adverbs; Concord - grammatical concord, notional concord and the principle of proximity between subject and verb.

Unit-II
Lexis: Idioms and phrases; Words often confused; One-Word Substitutes; Formation of words (suffixes, prefixes and derivatives); Foreign Words (A selected list)

Unit-III
Oral Communication:
Part-A: Introduction to principal components of spoken English – Word-stress patterns, Intonation, Weak forms in English
Part-B: Developing listening and speaking skills through various activities, such as (a) role play activities, (b) Practising short dialogues (c) Group discussion (d) Debates (e) Speeches (f) Listening to news bulletins (g) Viewing and reviewing T.V. programmes etc.

Unit-IV
Written Communication:
Developing reading and writing skills through such tasks/activities as developing outlines, key expressions, situations, slogan writing and theme building exercises

Reading verbal and non-verbal texts-like cartoons, Graphs and tabulated data etc.

Unit-V (For Internal Evaluation Only):

Book Review – Herein the students will be required to read and submit a review of a book (Literary or non-literary) of their own choice. This will be followed by a presentation of the same in the class

Unit-VI
Technical Writing:
(a) Business Letters, Format of Business letters and Business letter writing
(b) E-mail writing
(c) Reports, Types of Reports and Format of Formal Reports
(d) Press Report Writing

SUGGESTED READING:

1. *Language in Use (Upper intermediate Level, Adrian Doff Christopher Jones, Cambridge University Press*
2. *Common Errors in English, Abul Hashe, Ramess Publishing House, new Delhi*
SCHEME OF EXAMINATION:
All questions will be compulsory and will cover all the aspects of the syllabus except unit V. There will be sufficient internal choice.

Unit-I: 20 Marks
Questions No. 1 will require the students to carefully read the sentences given and trace the errors, if any, and then supply the correct alternatives/answers.

Unit-II: 20 Marks
Question No. 2 may have four or five parts testing knowledge of different items of vocabulary.

Unit-III: 20 Marks
Question No. 3 will have two parts of 10 marks each from part A and B of the unit. Part A will have content words, form words and sentences for stress marking, transcription and intonation marking respectively. Part B will test students’ speaking skills through various oral tasks and activities - debate, group discussion and speech - in written form only.

Note: Speaking and listening skills will primarily be tested orally through internal assessment.

Unit-IV: 20 Marks
Question No. 4 may have many parts. The questions will be framed to test students' composition skills on the elements prescribed in the unit. For example, the students may be required to develop a hypothetical situation in a dialogue form, or to develop an outline, key expression, graph etc.

Unit-V is for internal assessment only.

Unit-VI: 20 Marks
Question No. 5 may have two parts. While the one part may require the students to frame either a press/news report for the print media or write the given business letter, or e-mail a message, the second part will have a theory question on the format of formal report and business letter.
MATH-102-E Mathematics-II (B Tech. 2nd Sem)

L T P Total Credit Duration of exam
3 2 - 4 3 Hours

SYLLABUS

Part-A
Infinite series: Convergence and divergence, Comparison, D’ Alembert's ratio, Integral, Raobes, Logarithmic and Cauchy root tests, Alternating series, Absolute and conditional convergence.
Matrices & its Applications: Rank of a matrix, elementary transformations, elementary matrices, inverse using elementary transformations, normal form of a matrix, linear dependence and in dependence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigen values and eigen vectors, properties of eigen values, Cayley - Hamilton theorem and its applications.

Part-B
Linear differential equations of second and higher order. Complete solution, complementary function and particular integral, method of variation of parameters to find particular integral, Cauchy's and Legendre's linear equations, simultaneous linear equations with constant co-efficients. Applications of linear differential equations to simple pendulum, oscillatory electric circuits.

Part-C
Laplace Transforms and its Applications: Laplace transforms of elementary functions, properties of Laplace transforms, existence conditions, transforms of derivatives, transforms of integrals, multiplication by t^n, division by t. Evaluation of integrals by Laplace transforms. Laplace transform of Unit step function, unit impulse function and periodic function. Inverse transforms, convolution theorem, application to linear differential equations and simultaneous linear differential equations with constant coefficients.

TEXT BOOKS:
1. Advanced Engg. Mathematics F Kreyszig

REFERENCE BOOKS:
PHY-102-E : Physics-II (B.Tech. 2nd Sem)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credit</th>
<th>Duration of exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>3.5</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

SYLLABUS

PART-A

CRYSTAL STRUCTURE
Space Lattice, unit cell and translation vectors, Miller indices, simple crystal structure, Bonding in solids, Experimental x-ray diffraction method, Laue method, powder Method, Point defects in solids, Elementary idea of quarks and gluons.

QUANTUM PHYSICS
Difficulties with Classical physics, Introduction to quantum mechanics-simple concepts, discovery of Planck's constant, Group velocity and phase velocity, Schrodinger wave equations - time dependant and time independent Schrodinger equations, Elementary ideas of quantum statistics.

FREE ELECTION THEORY
Elements of classical free electron theory and its limitations, Drude’s Theory of Conduction, quantum theory of free electrons, Fermi level, Density of states, Fermi-Dirac distribution function, Thermionic emission, Richardson's equation.

PART-B

BAND THEORY OF SOLIDS
Origin of energy bands, Kronig, Penney Model (qualitative), E-K diagrams, Brillouin Zones, Concept of effective mass and holes, Classification of solids into metals, Semiconductors and insulators, Fermi energy and its variation with temperature. Hall effect and its Applications.

PHOTOCONDUCTIVITY AND PHOTOVOLTAICS
Photoconductivity in insulating crystals, variation with illumination, effect of traps, applications of photoconductivity, photovoltaic cells and their characteristics.

MAGNETIC PROPERTIES OF SOLIDS
Atomic magnetic moments, orbital diamagnetism, Classical theory of paramagnetism, ferromagnetism - molecular fields and domains.

SUPER CONDUCTIVITY
Introduction (experimental survey), Meissner effect, London equation.

TEXT BOOKS:
1. Introduction to Solid State Physics (VII Ed.) – Charles Kittel (John Wiley).
2. Quantum Mechanics – Powell and Crasemann (Oxford & IBH)

REFERENCE BOOKS:

Note: The Examiners will set eight questions, taking four from each part. The students will be required to attempt five questions in all selecting at least two from each part. All questions will carry equal marks.
SYLLABUS

LIST OF EXPERIMENTS

The experiments in Second semester will be based upon electricity, Magnetism, Modern Physics and Solid State Physics which are the parts of theory syllabus.

1. To find the low resistance by carey-Foster's bridge.
2. To find the resistance of a galvanometer by Thomson’s constant deflection method using a post office box.
3. To find the value of high resistances by Substitution method.
4. To find the value of high resistances by Leakage method.
5. To study the characteristics of a solar cell and to find the fill factor.
6. To find the value of e/m for electrons by Helical method.
7. To find the ionisation potential of Argon/Mercury using a thyratron tube.
8. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
9. To study the characteristics of (Cu-Fe, Cu-Constantan) thermo couple.
10. To find the value of Planck's constant by using a photo electric cell.
11. To find the value of co-efficient of self-inductance by using a Rayleigh bridge.
12. To find the value of Hall Co-efficient of semi-conductor.
13. To study the V-I characteristics of a p-n diode.
14. To find the band gap of intrinsic semi-conductor using four probe method.
15. To calculate the hysteresis loss by tracing a B-H curve.

RECOMMENDED BOOKS:

1. Advanced Practical Physics – B.L. Worshnop and H.T. Flint (KPH)

Note: Students will be required to perform at least 10 experiments out of the list in a semester.